Institute for Climate & Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT

Towards maximum feasible reduction in aerosol forcing uncertainty

Ken Carslaw

Leighton Regayre, Jill Johnson, Rachel Sansom, Xinyi Huang, Paul Field (Met Office)

Natural Environment Research Council

"Maximum feasible reduction" in uncertainty

When you can't tell, within observational uncertainty, that the model has deficiencies

- **Deficiencies** = **inappropriate** structural design or inadequately tuned
- **Inappropriate** = incorrect, incomplete, too simple

- Using Perturbed Parameter Ensembles (PPEs) and observations to expose model structural deficiencies
- Causes of uncertainty and how they change as the model is constrained
 priority observations
- "Process-based" model PPEs

An introduction to perturbed parameter ensembles (PPEs)

Bayesian emulator 24 -100Parameter 1 -200 22 ()Q -300 20 -400 utpu 18 -500 -600 16 -700 25 75 100 50 Parameter 2

Oakley and O'Hagan, Probabilistic sensitivity analysis of complex models: A Bayesian approach, J. Roy. Stat. Soc. B (2004).

Lee et al. Emulation of a complex global aerosol model, ACP (2011)

- A perturbed parameter ensemble (PPE) is a set of model simulations that samples combinations of model inputs – any "simulation-controlling factor"
- Optimally designed to train a statistical emulator
- Typically need 5-10 simulations per parameter

Can then generate~millions of "model variants"

UNIVERSITY OF LEEDS

Using PPEs to "constrain" a model

Identify the **observationally plausible** parameter space (lots in here about obs. uncertainty!)

- Constrains the joint parameter ranges
- Constrains the range of unobservable quantities (e.g., forcing, cloud feedback)

Approach to model development and tuning

Different parameterizations (structural uncertainty) Different parameter settings (parametric uncertainty)

Balloon-squeezing problem:

Can't reduce its size (constrain it) without changing the balloon

It's structurally not the best balloon

The balloon-squeezing problem implies structural errors

Forcing constrained by PM_{2.5}

Forcing constrained by Sulphate

HadGEM climate model PPE perturbing 26 aerosol parameters (Johnson et al., 2020)

The model doesn't include nitrate aerosol, so constraining PM_{2.5} forces sulfate to be too high, resulting in too-high a forcing

Note, you don't <u>need</u> a PPE to expose potential structural deficiencies, but it helps because you have explored all possible other explanations (full parameter space)

"... I can't retune my model, it must have a structural error."

Constraint of droplet number

Constraint of droplet number

Many observations, many model inconsistencies

Model-observation inconsistencies compromise the constraint

If we can reduce structural deficiencies then we can make rapid progress with observational constraint...

Remaining causes of uncertainty after constraint

UNIVERSITY OF LEEDS

Remaining causes of uncertainty after constraint

Quantifying remaining causes of uncertainty after constraint will enable us to identify **priority observations or approaches** to further increase constraint

Needs to be done in parallel with structural improvements

"Process model" PPEs and emulators

18

Emulator of cloud response to these two cloud-controlling factors

"Process model" PPEs and emulators

10¹ Emulator of how INP 1.5km UM nested simulation Obs. and $N_{\rm d}$ control cloud (mixed-phase cold air outbreak) 10-1 albedo Includes 4 other uncertain 10-3 microphysics parameters Albedo 0.50 bedd A 0.50 0.55 0.50 bedo INP Sub-domain Boundar 0.50 🗸 0 (Huang et al., in prep)

_9

- Observational constraint (calibration, multi-variate tuning) of a model is fairly straightforward
 - Challenges are obs. uncertainty, representation error and inconsistencies.
- Attempts to constrain a PPE to multiple observations reveals model structural deficiencies, which limit overall constraint
 - They prevent constraint to consistent parts of parameter space
- Remaining causes of uncertainty after each constraint is applied could guide us to regions and obs. to focus on
- PPEs and emulators of high-resolution "process models" potentially very powerful

What should we do?

- 1. Define "constraint" (not goodness of fit)
 - Finding all model variants (structures and parameters) that are consistent within obs uncertainty
- 2. Determine the "constraining power" of observations (and combinations): Constraint of output variables

 constraint of forcing
 - Do "process-related" obs. have better constraining power? What are they?
 - What is the effective observational uncertainty? □ affects strength of constraint
- 3. Expose and investigate multi-observation inconsistency with models
 - How do we identify deficient *processes* when we find inconsistencies
 - Are there some inconsistencies with a direct/obvious process connection?
- 4. Set up "process model" **multi-model PPEs.**
- 5. Organise uncertainty reduction as a long-term collaborative activity alongside process research

Plausible

Implausible

Observations used for constraint

~9000 grid-point aggregated measurements of:

- Aerosol optical depth
- PM_{2.5}
- Aerosol concentration (N_{>3nm})
- ~CCN concentration (N_{>50nm})
- Sulphate mass
- Organic carbon mass

Observational constraint of aerosol forcing

Sand	lu an	d Stev	/ens ((2011))

On the Factors Modulating the Stratocumulus to Cumulus		Simulation	Domain	$\overline{\text{CC}}_{0-48h}$ (%)	MaxCF _{3rdnight} (%)	ΔA (%)
Transitions	Reference	REF	Reference	94	83	51
	Δ SST	CST-SST	Small	99	98	20
	Δ droplet number	PP	Reference	86	40	72
	$\dot{\Delta}$ divergence	DIV	Reference	94	88	38
	Δ LW radiation	RAD	Small	90	64	68
	A stability	SLOW	Reference	97	87	44
		FAST	Reference	91	33	81
	Δ inversion strength	DTH	Small	75	57	54
	Δ inversion humidity	DTHQT	Small	95	94	26

Can use PPEs to understand how multiple cloud-controlling factors affect cloud behavior

6-parameter large eddy cloud PPE

Evolution of one ensemble member

Cloud evolution across the PPE

Challenges:

- Defining consistent "transition time" from Sc to Cu to emulate
- Dealing with awkward runs (no cloud, no transition)
- Accounting for natural variability (emulators describe deterministic behaviour) – subm. JAMES

Sc to Cu transition time

Future: PPEs of mixed-phase clouds (PhD Xinyi Huang)

UNIVERSITY OF LEEDS

Atmospheric PPEs at the APPEAR workshop

