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• Deficiencies = inappropriate structural design or 
inadequately tuned

• Inappropriate = incorrect, incomplete, too simple

“Maximum feasible reduction” in uncertainty

When you can’t tell, within observational uncertainty, that the 
model has deficiencies
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• Using Perturbed Parameter Ensembles (PPEs) and observations 
to expose model structural deficiencies

• Causes of uncertainty and how they change as the model is 
constrained 🡪 priority observations

• “Process-based” model PPEs 

Topics
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An introduction to perturbed parameter ensembles (PPEs)

Bayesian emulator
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Oakley and O’Hagan, Probabilistic sensitivity analysis of complex 
models: A Bayesian approach, J. Roy. Stat. Soc. B (2004).

Lee et al. Emulation of a complex global aerosol model, ACP (2011)

• A perturbed parameter 
ensemble (PPE) is a set of model 
simulations that samples 
combinations of model inputs – 
any “simulation-controlling factor”

• Optimally designed to train a 
statistical emulator 

• Typically need 5-10 simulations 
per parameter

� Can then generate 
~millions of “model variants” 
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Using PPEs to “constrain” a model

Identify the observationally 
plausible parameter space 
(lots in here about obs. uncertainty!)

�  Constrains the joint parameter 
ranges

�  Constrains the range of 
unobservable quantities (e.g., 
forcing, cloud feedback)

Output
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Approach to model development and tuning

Aerosol forcing
0     -1 -2

CMIP models

A new discovery
Another new discovery

Skillful at AOD

Skillful at 
PM trends

Skillful at cloud 
metrics

GLOMAP v1

Different parameterizations (structural uncertainty)
Different parameter settings (parametric uncertainty)

Observationally 
plausible parameter 
space rather than just 
“best model”

Carslaw et al. (Eos 2018)

Balloon-squeezing problem: 

Can’t reduce its size (constrain it) 
without changing the balloon

It’s structurally not the best balloon  
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The balloon-squeezing problem implies 
structural errors

Forcing constrained by PM
2.5

Forcing constrained by Sulphate

The model doesn’t include nitrate aerosol, so 
constraining PM

2.5
 forces sulfate to be too high, 

resulting in too-high a forcing

HadGEM climate model PPE perturbing 
26 aerosol parameters (Johnson et al., 2020)
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Note, you don’t need a PPE to expose potential structural 
deficiencies, but it helps because you have explored all possible 
other explanations (full parameter space)

“… I can’t retune my model, it must have a structural error.”



9

N Atlantic 
shallow cloud 
properties

MODIS, CERES and 
Multisensor Advanced 
Climatology

HadGEM PPE spread

Observations

66%, 90%, full 
PPE range

UKESM1 climate model PPE perturbing 
37 aerosol, cloud & physical model parameters 

(Regayre et al., 2023)
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Constraining droplet number 
constrains shortwave flux

Constraint of droplet number

N
d
 

constrained 
in this month

Consistent 
with other 

months

Consistent 
with SW flux
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Constraint of droplet number

Inconsistent 
with LWP

Structural error? In a single-moment 
cloud model, rain doesn’t reduce LWP 
and droplet number consistently



12

Many observations, many model inconsistencies

Normalized absolute 
difference
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 Hemispheric N

d
 

contrast

T: Sc to Cu Transects 
(e.g., dN
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/dLWP)
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Effect on this model-observation bias
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ERF

Unconstrained

Model-observation inconsistencies 
compromise the constraint

Hypothetical 
(by fixing some 
structural 
deficiencies)

Hypothetical 
(no structural 
deficiencies, limited by 
obs. uncertainty)

More obs. 🡪 
stronger 
constraint

Inconsistent obs. 
🡪 compromised 
constraint

(Regayre et al., 2023)(Regayre et al., 2023)

Number of observations used to constrain
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Workflow for uncertainty reduction

Find new 
structural 

deficiencies 

Tighter 
.constraint

Fix structural 
deficiencies 

New PPE

If we can reduce 
structural deficiencies 
then we can make 
rapid progress with 
observational 
constraint…
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Remaining causes of uncertainty after constraint

(Regayre et al., in prep.)

ΔF
aer

     ΔFaci     ΔFari ΔF
aer

     ΔFaci     ΔFari
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Remaining causes of uncertainty after constraint

Acc. mode dry deposition Sea spray flux Cloud entrainment 

Cloud updraft speed BC refractive index Cloud radiation parameter

Makes ACI more negative  Makes ACI less negative 
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Quantifying remaining causes of uncertainty after constraint will enable us 
to identify priority observations or approaches to further increase 
constraint

Needs to be done in parallel with structural improvements
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30m large eddy model
(Stratocumulus)

“Process model” PPEs and emulators

Δq
t

Δθ
l

Emulator of cloud 
response to these 
two 
cloud-controlling 
factors

(Sansom et al., JAMES, 2024)
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“Process model” PPEs and emulators

1.5km UM nested simulation 
(mixed-phase cold air outbreak)

2.5 km nested 
global model
(mixed-phase cold 
air outbreak)

N
IN

P

N
d

Emulator of how INP 
and Nd control cloud 
albedo
Includes 4 other uncertain 
microphysics parameters

Obs.

Albedo

(Huang et al., in prep)



20

• Observational constraint (calibration, multi-variate tuning) of a model is 
fairly straightforward
– Challenges are obs. uncertainty, representation error and inconsistencies.

• Attempts to constrain a PPE to multiple observations reveals model 
structural deficiencies, which limit overall constraint
– They prevent constraint to consistent parts of parameter space

• Remaining causes of uncertainty after each constraint is applied could 
guide us to regions and obs. to focus on

• PPEs and emulators of high-resolution “process models” potentially 
very powerful

Summary
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What should we do?

Plausible

Implausible

N
d

LWP

ERF

1. Define “constraint” (not goodness of fit) 
– Finding all model variants (structures and parameters) that are consistent within obs uncertainty

2. Determine the “constraining power” of observations (and combinations): Constraint of 
output variables 🡪 constraint of forcing

– Do “process-related” obs. have better constraining power? What are they?
– What is the effective observational uncertainty? 🡪 affects strength of constraint

3. Expose and investigate multi-observation inconsistency with models
– How do we identify deficient processes when we find inconsistencies
– Are there some inconsistencies with a direct/obvious process connection?

4. Set up “process model”  multi-model PPEs. 

5. Organise uncertainty reduction as a long-term collaborative activity alongside process 
research
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Observations used for constraint

~9000 grid-point aggregated 
measurements of:

• Aerosol optical depth
• PM

2.5
• Aerosol concentration (N

>3nm
)

• ~CCN concentration (N
>50nm

)
• Sulphate mass
• Organic carbon mass
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Observational constraint of aerosol forcing

Constrained Forcing

Observations

Constrained parameter space
σ
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Forcings that are 
consistent with 
observations

Aerosol direct forcing (W m-2)
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Sandu and Stevens (2011) 
On the Factors Modulating the 
Stratocumulus to Cumulus 
Transitions

Approach to process understanding

Reference
Δ SST

Δ droplet number
Δ divergence

Δ LW radiation

Δ  stability

Δ inversion strength
Δ inversion humidity

Can use PPEs to understand 
how multiple cloud-controlling 
factors affect cloud behavior
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85 initial simulations
1. Boundary layer water mixing ratio
2. Boundary layer depth
3. Inversion Δθ
4. Inversion Δq
5. Aerosol concentration
6. Autoconversion (droplet🡪rain) rate

6-parameter large eddy cloud PPE
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Evolution of one ensemble member

12h 34h 72h

Sea surface temperatures increase 1.5 K per day
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Cloud evolution across the PPE

Challenges: 

• Defining consistent 
“transition time” from Sc to 
Cu to emulate

• Dealing with awkward runs 
(no cloud, no transition) 

• Accounting for natural 
variability (emulators 
describe deterministic 
behaviour) – subm. 
JAMES
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Sc to Cu transition time
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Mean emulator surfaces

Each dot (training run) 
has a range of values of 
the other 4 parameters, 
so colour doesn’t match 
surface
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Future: PPEs of mixed-phase clouds (PhD Xinyi Huang)
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1. MOZART Chemistry, 28p, 13 years x global 
2. LES clouds, 6p, 2h x 12km Sansom
3. GISS, climate, 45p, 1y x global Elsaesser
4. E3SM climate, 3p, 100y x global Tebaldi
5. UKESM aerosol, 37p, 1y x global Regayre
6. CAM climate, 45p, 3y x global Gettelman
7. SAM LES cloud 6p, 48km x 12h Yao-Sheng Chen
8. ECHAM simplification, 14p, 1y x global Proske
9. GLOMAP aerosol ERF, 26p, 1y x global. Johnson

10. E3SM, 18p. 5 days x global Qian (also WRF for wind/solar 
energy, 9 and 11p, regional (1000 km?), 24h and 6 days

11. HadGEM GA, 47,71,73p, 5y x glob, Rostron
12. RAMS meteorology, 10p, 1500km x 24 h Park
13. ICON-NWP meteorology, 5p, 3 days x 450km (nested), Oertel
14. CESM1.2 convection/microphysics, 15p, 10y x global, Sui 
15. HadGEM/UKCA volcanic, 3p, 3y x global
16. FRSGC/UCI CTM chemistry, 36p, global x 1 year
17. GLOMAP SOA chemistry, 6p, global x 1 year, Carslaw
18. CAS FGOALS cloud-climate, 16p, 2 months x global, Yang
19. CAS-FGOALS-g3 climate mean state, 34p 5y x global and 16p 1 

and 40y x global, Guo
20. CNRM-CM-6-1 climate feedbacks, 30p, 3y x global, Peatier
21. HadGEM3 climate feedbacks, 71p, 5y x global, Tsushima

Atmospheric PPEs at the APPEAR workshop


