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Atmospheric heat transport into the PEEEETESEAEE==I
polar regions barely changes under
global warming
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Meridional heat transport

Pre Industrial
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Last Glacial Maximum,

More generally, (coupled) poleward energy
transport is nearly climate state invariant
from the to
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Arctic response to increased poleward heat transport
Mean State
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Arctic response to increased poleward heat transport
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Key point: The expected Arctic energetic
adjustment to increased poleward heat
transport is polar amplified warming and a
reduction in poleward heat transport

| Because dynamic feedbacks are
stronger than radiative feedbacks



Temporal evolution of AHT associated with (20)
sea ice loss events in CESM1 — wintertime
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Temporal evolution of AHT associated with (20)
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Temporal evolution of AHT associated with (20)
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A Preceding Ice Loss . . . .
'g B Times series of sea ice concentration
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Pulse of atmospheric heat transport Time series of AHT Convergence

precedes sea ice loss Bering
Labrador
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Observational relationship between
AHT and sea ice loss
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Latitude

Extratropical trends are consistent with
diffusion of energy down the gradient of
surface temperature change

[0 Delayed Southern Ocean warming and
increased poleward AHT into the Southern
Ocean

0 Arctic amplification and reduced poleward
AHT into the Arctic
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Emphasis: trends
differ
between reanalysis

Are there lesson to be
learned?
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Do models simulate the AHT trends?

Total trends

Reanalysis
Coupled Models

AIVHP—=prescribed SST

AHT Trend (PW per 40 years)
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Observed tropical trends are unrealistic due to unrealistic
precipitation trends in reanalysis (Chemke and Polvani, 2019)

better match the observations
compared to



Partitioning of atmospheric energy by
circulation type
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Latitude

Anomaly in eddy AHT
convergence (at 60S) forces
ascent and strengthening of
Ferrel Cell
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Conclusions

Changes in atmospheric heat transport into the polar | _
regions reflect competing influence from low Time series of AHT Convergence

latitude moistening and polar amplified warming Bering
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'] These competing influences seen in the time
evolution of AHT changes associated with
high-frequency ice loss events
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Observed AHT trends are small due to
compensating changes in Eddy and
Ferrel cell AHT
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