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The challenge: Inferring Process from Snapshots

Can we learn the rules of football from (infrequent) snapshots of the game?
- Assuming the rules of the game do not change!



The challenge: Inferring Process from Snapshots

- Polar orbiting satellites
- 1-2 x per day
- Aircraft flyby

Snapshots [ statistics of system state

Temporal evolution [ process understanding

Can we learn the rules of football from (infrequent) snapshots of the game?
- Assuming the rules of the game do not change!



1. Profiling drop effective radius using cloud top retrievals

Rather than sample snapshots at
different times, look at clouds in a field at
the same time, but at different stages of
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- Each cloud is at a different stage of its lifecycle
- Sample r_at cloud top

Cloud-t
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Testing this idea using LES:

Large Eddy simulation of shallow marine cumulus

S.Zhang et al. 2011
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Testing this idea using LES:

Large Eddy simulation of shallow marine cumulus
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Ergodicity

A sufficiently large collection of random samples from a process

can represent the average statistical properties of the entire
process.

Often thought of as a ‘time-space exchange’



Ergodicity
Practical examples:

1)  Whether one person rolls a die 100 times or 100 people roll
a die once, the expected outcome is the same (ergodic)



Ergodicity

Practical examples:

1)

2)

Whether one person rolls a die 100 times or 100 people roll
a die once, the expected outcome is the same (ergodic)

Whether one person plays Russian roulette 6 times or 6

people play Russian roulette once, the outcome is very
different

(non-ergodic)




Aspect ratio, S

What does this success in r_ profiling mean?

Self-similarity in a cloud field growing in ~fhomogeneous environmental

conditions

Aspect ratio tells us something about net entrainment
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Feingold et al. 2024, in progress
See also Hoffmann et al. 2023



2. Compositing of a stratocumulus cell from a snapshot

Hypothesis: The processes in a canonical Sc cell can be understood
by compositing samples of many different Sc cloud cells

Spatial sampling [ process
understanding

Assumption:

Negligible variability in
meteorology/boundary layer
properties across the image

Closed-cell stratocumulus



2. Compositing of a stratocumulus cell from a snapshot

Hypothesis: The processes in a canonical Sc cell can be understood
by compositing samples of many different Sc cloud cells

LESIof cloqed celll Sc
H

Y= stream function
TWP = total water path
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- Sample a large number of cells in this scene
- Sort them by quantiles of a variable such as TWP
- Composite all samples

Bretherton and Blossey (2017)
Zhou and Bretherton (2019)



2. Compositing of a stratocumulus cell from a

snapshot

The structure of a closed stratocumulus cell can be explained
by the composite of many closed cells sorted by TWP

—u:
: £ )
ntrainment ;‘ entrainmen

Cold and Dry

Zhou and Bretherton (2019)



3. Evolution of a Cold Air Outbreak LWP-N,
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3. Evolution of a Cold Air Outbreak 2> ‘trajectories” inferring cloud street

Precip-driven breakup
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Precip-driven breakup
0) Large scale meteorology sets the boundary layer depth
1) activation
2) condensation
3) collision-coalescence dominates, while entrainment
reduces LWP

temporal — spatial consistency, provided the
trajectory through the domain is faster than
the cold air outbreak event

Entrainment-driven breakup

0) Large scale meteorology sets the boundary layer depth

1) activation

2) Minimal condensation

3) Entrainment dominates, while collision-coalescence
increases r,




Summary

How well can we infer ‘Process’ from ‘Snapshots’?

* Profiling of r_ based on cloud-top r_ in a cloud field
* Appears robust in shallow marine cumulus
* Implies self similarity across a cloud field
* Cloud aspect ratio [ ][] entrainment

 Stratocumulus compositing to infer process

 Randomly sample field and sorting by Total Water Path provides
insight into process

* Time-Space interchangeability in cold air outbreak

* Dominant meteorological and uphysical processes can be
identified

e Largescale system evolution needs to be slower than the
processes being explored
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Some comments on Ergodicity

* Exploiting Ergodicity — to the extent that it exists — is a powerful
way to utilize large samples of snapshots to infer process

e Strict definitions of ergodicity may not be necessary for
snapshots to be useful for understanding processes

* Practical aspects may get in the way
* E.g., ability to retrieve r , 7in broken clouds



