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Seasonal pattern of Arctic warming

1. What drives this winter 
peak in warming?

2. How is Arctic warming 
impacted by 
atmospheric heating in 
different seasons?
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Seasonal migration of peak warming with increased forcing

20-year running trends under RCP8.5
forcing in single model initial-
condition large ensembles 

Holland and Landrum (2021),
Liang et al. (2022), Wu et al. (2023)
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What drives seasonality in Arctic warming?
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the surface layerSea ice

Dai et al., 2019; Deser et al., 2010; Dwyer et al., 
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1980; Pithan and Mauritsen, 2014; Robock, 1983; 
Screen and Simmonds, 2010; Yoshimori et al., 2014
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Use idealized experiments in a 
single-column sea-ice model to 
isolate different mechanisms 
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How does the SCM compare to a comprehensive climate model?
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Single-column model captures seasonal pattern of Arctic warming
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Seasonality in warming persists without seasonality in feedbacks
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c  SCM: Annual-mean Planck 

 feedback, constant albedo



Role of conductive heat flux?
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Conductive heat flux supports peak early winter warming over frozen ice 
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c  SCM: Annual-mean Planck 

 feedback, constant albedo

d  SCM: Annual-mean Planck, constant 

albedo, constant ice depth in cond. flux



Even with constant warming over frozen ice, the transition from ice to open ocean 
produces peak warming in early (shifting to late) winter
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c  SCM: Annual-mean Planck 

 feedback, constant albedo

d  SCM: Annual-mean Planck, constant 

albedo, constant ice depth in cond. flux



Explicitly model changes in effective heat capacity

𝑇 𝑡, 𝐸 =
𝐸

𝑐𝑚𝑙𝐻𝑚𝑙
Single-column model with no ice, only an ocean mixed layer:

surface temperature

effective heat capacity

enthalpy
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Explicitly model changes in effective heat capacity
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1) 𝐻𝑚𝑙 = 1 m    - represents small effective heat capacity of frozen ice
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Explicitly model changes in effective heat capacity

𝑇 𝑡, 𝐸 =
𝐸

𝑐𝑚𝑙𝐻𝑚𝑙
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Experiments:
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2) 𝐻𝑚𝑙 = 50 m - represents large effective heat capacity of open ocean
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       - represents transition from frozen ice to open ocean

13

E < 0                         E ≥ 0
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Explicitly model changes in effective heat capacity

Small eff. heat capacity of frozen ice

Hahn et al., 2022  |  14



Explicitly model changes in effective heat capacity

Small eff. heat capacity of frozen ice Large eff. heat capacity of open ocean

Hahn et al., 2022  |  14



Small eff. heat capacity of frozen ice Large eff. heat capacity of open ocean

Explicitly model changes in effective heat capacity

Hahn et al., 2022  |  14



Small eff. heat capacity of frozen ice Large eff. heat capacity of open ocean

Explicitly model changes in effective heat capacity

Hahn et al., 2022  |  14

Effective heat capacity 
changes alone can 
produce the seasonal 
pattern of Arctic 
warming



Small eff. heat capacity of frozen ice Large eff. heat capacity of open ocean

Explicitly model changes in effective heat capacity

Hahn et al., 2022  |  14

Effective heat capacity 
changes alone can 
produce the seasonal 
pattern of Arctic 
warming

Consistent mechanism 
across fully-coupled 
CMIP5 models (Sejas 
and Taylor, 2023)



Seasonal pattern of Arctic warming

1. What drives the winter peak in Arctic warming?

Increasing effective heat capacity of the surface layer alone can produce this 

pattern; winter warming is also amplified by increasing conductive heat flux 

through thinning ice and the lapse-rate feedback

2. How is Arctic warming impacted by atmospheric heating in different seasons?

Early summer radiative heating produces the largest annual-mean Arctic 

warming and comparable winter warming to winter radiative heating, due 

to large insolation in summer
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Seasonal contributions to Arctic warming

• Many studies focus on winter 
mechanisms that increase 
Arctic warming 

Hahn et al., 2021
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Seasonal contributions to Arctic warming

• Many studies focus on winter 
mechanisms that increase 
Arctic warming 

• Also expect summer 
atmospheric heating to drive 
winter warming by melting 
sea ice and supporting a 
transition to open ocean in 
early winterHahn et al., 2021

16



How does seasonal radiative heating impact 
warming in other seasons and annually?
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How does seasonal radiative heating impact 
warming in other seasons and annually?

• Bintanja and Krikken (2016) 
apply a 30 W m-2 artificial 
longwave forcing to Arctic 
surfaces in each season

• Spring and summer forcing 
produce the largest annual 
warming via a strong ice-
albedo feedback and seasonal 
ocean heat storage

17



• Apply a 30 W m-2 longwave forcing 
to non-land surfaces north of 70°N 
in each month using the CESM1 
(CAM4) slab-ocean model

Methods
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• Apply a 30 W m-2 longwave forcing 
to non-land surfaces north of 70°N 
in each month using the CESM1 
(CAM4) slab-ocean model

• Sensitivity to mean-state climate 
(1850 or 2XCO2) and sign of forcing

• Complement with simpler models

Methods

18



Early summer forcing produces the largest annual-mean warming 
g
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Early summer forcing produces the largest annual-mean warming 
and comparable winter warming to winter forcing

Hahn at al., in prep | 19



Why does June forcing produce the largest annual Arctic warming? 
Peak insolation gives largest increase in absorbed shortwave radiation

Forcing Experiment
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Why does June forcing produce the largest annual Arctic warming? 
Peak insolation gives largest increase in absorbed shortwave radiation

Forcing Experiment
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Snow melt increases early absorbed sunlight in June experiment

Δ Surface Net SW (W m-2)                  Δ Surface Albedo                               Δ Snow Fraction                             Δ Sea ice area (%)
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Snow melt increases early absorbed sunlight in June experiment

Δ Surface Net SW (W m-2)                  Δ Surface Albedo                               Δ Snow Fraction                             Δ Sea ice area (%)
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Summer forcing has a smaller impact in a warmer climate

1850 base-state            2xCO2 base-state

Positive 
forcing
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Summer forcing has a smaller impact in a warmer climate

1850 base-state            2xCO2 base-state

Positive 
forcing

Forcing Forcing 
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Sensitivity to sign of forcing depends on base-state climate

1850 base-state            2xCO2 base-state

Positive 
forcing

Negative 
forcing

Hahn at al., in prep | 23



Seasonal pattern of Arctic warming

1. What drives the winter peak in Arctic warming?

Increasing effective heat capacity of the surface layer alone can produce this 

pattern; winter warming is also amplified by increasing conductive heat flux 

through thinning ice and the lapse-rate feedback

2. How is Arctic warming impacted by atmospheric heating in different seasons?

Early summer radiative heating produces the largest annual-mean Arctic 

warming and comparable winter warming to winter radiative heating
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Seasonal pattern of Arctic warming

1. What drives the winter peak in Arctic warming?

Increasing effective heat capacity of the surface layer alone can produce this 

pattern; winter warming is also amplified by increasing conductive heat flux 

through thinning ice and the lapse-rate feedback

2. How is Arctic warming impacted by atmospheric heating in different seasons?

Early summer radiative heating produces the largest annual-mean Arctic 

warming and comparable winter warming to winter radiative heating

Early summer processes are particularly important for future study; 
expect important impacts of non-winter heat transport, forcing, and 
feedbacks on winter warming
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Importance of alternative frameworks, simpler models, and idealized 
experiments to understand and predict polar climate change

Diagnostic analysis of winter feedback contributions in 
climate models excludes:

• Any physical process that does not appear in a radiative budget 
(like changes in surface effective heat capacity)

• Interactions between mechanisms in different seasons (like 
summer feedbacks that impact winter warming)

25
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