A Novel Computational Framework for Optimal Experimental Design to Improve Climate Prediction

US CLIVAR Micro2Macro Workshop @University of Wyoming, Laramie

October 28-30, 2024

Zhongjing Jiang, Natalie Isenberg, Tamanna Subba, Hyun-Myung Woo, Nathan Urban, Shawn Serbin, Chongai Kuang

Computational Science Initiative Environmental and Climate Sciences Department

What are the challenges? – Model observation integration

• Improvements in climate model predictability are hampered by limited feedback between reducing model uncertainties and designing optimal observing systems.

Solutions– Model observation integration

ModEx is a concept to enable this model-observation coupling but is often not fully realized because models and observing systems often have a mismatch in scales (spatial/temporal) and focus.

Model-Observing System Co-Design

Earth System Model Framework

Uncertainty Quantification Framework

UQ is a field of study that deals with assessing, analyzing, and managing uncertainty in various mathematical models and simulations.

Automated financial trading

Self-driving car

Computational Framework

Model-E3SM Land Model

Perturbed Parameter Ensemble (PPE)

297 parameters in clm_params.nc-> 26 parameters

Quantities of interest

The Earth's Energy Budget:

- Sensible heat flux (H)
- Latent heat flux (LE)

Carbon and biogeochemical cycle:

• Gross primary productivity (GPP)

R

LE

H

Tf

н

Samuli, 2011

• Net ecosystem exchange (NEE)

NEE = -GPP+TER

 $GPP = A_{n,c} + A_{n,f}$

 $TER = R_a + R_h$

IPCC AR6 Figure 7.2

Observation

The most recent FLUXNET data product, FLUXNET2015

4500 4200 3900 3600 300 0

100W

80W

120W

Model calibration-Definition

Question

Model calibration-Classes

Model calibration

Likelihood-based calibration

Model calibration

Likelihood-based calibration

How good is the emulator?

Qol: GPP US-Me2

Global sensitivity analysis

Sobol Global Sensitivity Analysis (GSA)

Sobol GSA result Same site (US-Me2), different variables

Model calibration - Probabilistic model

Model calibration to US-Me2 with fluxnet data

Calibrated prediction at the same site

US-Me2

Optimal Experimental Design (OED)

Optimal Experimental Design (OED)

measured, reduces

most

model uncertainty the

Of the two proposed new site locations (A and B), which one should we choose?

Solution

OSSE Step

Model Uncertainty Parameter or prediction)

26

Observing system simulation experiment (OSSE)

Step1: run the model & train the emulator **Step2**: simulate observations (add unmodeled variability, model bias, instrument error)

Model Uncertainty Parameter or prediction)

Observing system simulation experiment (OSSE)

Step1: run the model & train the emulator **Step2**: simulate observations (add unmodeled variability, model bias, instrument error)

Model Uncertainty Parameter or prediction)

Posterior distribution for three sites

Site heterogeneity-prediction at different sites

GPP at Predicted Sites (GP emulator)

95% interval

— mean 🛛 — best estimate 🔹 fluxnet

OSSE-Simulated uncertainty reduction

Summary

Technical perspective

Emulation & Bayesian Inference

OSSE

Provide a novel, adaptable computational framework for model-observing system co-design (Where to measure?)

Scientific perspective

GSA: identified the leading sensitive parameters, e.g. flnr, slatop, leaf_longevity, etc. (What to measure?)

MCMC: Site heterogeneity might overwhelm parameter uncertainty (promoting new questions for next-step studies)

Backup slides

