A process system approach for addressing climate change uncertainties

Christina McCluskey

Climate Analysis Section, Climate and Global Dynamics Laboratory NSF National Center for Atmospheric Science

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

"How Can We Plan Future Process Observations to Reduce Climate Change Uncertainty?"

Climate Prediction Uncertainty: Southern Ocean Aerosol Cloud Interactions in CAM6

What can we do about it?

NCAR: Brian Medeiros, Trude Eidhammer, Sisi Chen, Isla Simpson, John Truesdale, Cecile Hannay, Justin Richling,Jesse Nusbaumer, Jon Petch, Charles G. Bardeen, Chris Kruse, Patrick Veres **PNNL:** Susannah Burrows, Andrew Gettelman **CSU:** Paul J. DeMott, Sonia M. Kreidenweis, Jessie Creamean **CIWRO/OU:** Greg McFarquhar, Qing Niu **Univ of Utah: Gerald (Jay) Mace Australian Bureau of Meteorology:** Alain Protat

Parametric uncertainty is as large as structural variability across all CMIP models for cloud feedback predictions

Perturbed Parameter Ensemble (PPE) CAM6.3, 45 parameters

Duffy et al., 2023

The Southern Ocean negative cloud phase feedback

Net optical depth feedback (W $m^{-2} K^{-1}$)

increases in cloud optical depth with warming **(cooling effect)**

The Southern Ocean negative cloud phase feedback

increases in cloud optical depth with warming **(cooling effect)**

Future projections indicate a dampening of the cloud phase feedback

no change in cloud phase or optical depth

Bjordal et al., 2020

Continued challenges with simulating Southern Ocean clouds

Medeiros et al., 2023

Conflicting results regarding the importance of Ice Nucleation

Assessing the ice nucleation process system **in CAM6**

McCluskey et al., 2023

What predictability skill do we need for INPs?

Coarse resolution: 2° latitude x 2° longitude; 32 levels to ~1 hPa

Temporal resolution: 30 minutes (2 year)

Specified dynamics free-running climate

MG2 two-moment cloud microphysics with modified ice nucleation

MAM6 - modal aerosol scheme

CLUBB - boundary layer dynamics scheme

Model Experiments: **Control** $D15 + M18$ D15 (dust only) M18 (marine only) D15 + M18x10

No simulated change in ice water path, liquid water path, shortwave or longwave cloud radiative effects due to changes in ice nucleation

Coarse resolution: 2° latitude x 2° longitude; 32 levels to ~1 hPa **Temporal resolution**: 30 minutes **free-running climate**, 2 years

CAM6 microphysics tendencies reveal processes that dominate simulated ice formation in Southern Ocean clouds

CAM6 microphysics tendencies reveal processes that dominate simulated ice formation in Southern Ocean clouds

All clouds, DJF, SO region (-65<Lat<-50 and 80<Lon<165)

Immersion Freezing of Rain

Immersion freezing of rain depends on the cloud's INP population

Thank you to Paul DeMott and Gabor Vali !

All clouds, DJF, SO region (-65<Lat<-50 and 80<Lon<165)

CAM6 microphysics tendencies reveal processes that dominate simulated ice formation in Southern Ocean clouds

All clouds, DJF, SO region (-65<Lat<-50 and 80<Lon<165)

Low cloud droplet number and high cloud water amount will drive an overactive autoconversion process in CAM6

Autocomversion of cloud droplets to rain	
$\left(\frac{\partial q_r}{\partial t}\right)_{auto}$	$F_{auto} c q_c^a N_c^b$
$\left(\frac{\partial q_r}{\partial t}\right)_{auto}$	$\left(\frac{\partial q_r}{\partial t}\right)_{auto}$
$F_{auto} 1350 q_c^{2.47} N_c^{-1.79}$	
q_c = cloud water content	
N_c = cloud droplet number concentration	
F_{auto} = autoconversion factor	
$a = micro mg_{autocom}$ and $exp = 2.47$	
$b = micro_mq_{tail}$ and $exp = -1.1$	
c = coefficient	

Deficiencies in simulating the ice nucleation process system **highlight a need for process-oriented diagnostics**

Low bias in N_d :

- low bias in CCN concentrations (emissions, transport, chemistry, scavenging)
- sub-grid vertical velocity
- Overactive sink from autoconversion and accretion

Supercooled Rain

- A low bias in N_d in SO clouds drives an over-active autoconversion process
- Rain number concentrations in CAM6 far exceed INP number concentrations

Rain Freezing:

- Dominates simulated initial ice formation
- Triggers secondary ice production (only HM rime splintering)

Despite progress in predicting Southern Ocean ice nucleating particles, **the impacts of aerosol on Southern Ocean clouds and ECS are still unknown.**

INFORM: Integrating Field Observations and Research Models

An NSF NCAR Director's Office Initiative aims to accelerate scientific discovery by strengthening observation-model integration through building community-ready tools

Gretchen Mullendore Mesoscale & Microscale Meteorology

Allison McComiskey Earth Observing Laboratory

Jon Petch *Climate and Global Dynamics Laboratory*

Jake Liu *Project Scientist, MMM*

Rosimar Rios-Berrios *Scientist, MMM*

Christina McCluskey *Project Scientist, CGD*

Wen-Chau Lee *Senior Scientist, EOL*

C MPASS COmmunity Model Process-oriented Assessments for Earth System Science

Targeted Process Systems

- 1. warm phase aerosol-cloud interactions in stratocumulus to cumulus transition regime
- 2. convective dynamics and precipitation (tentative)
- 3. atmosphere-land interactions (tentative)
- 1. Observation Process System Database
- **Observation Contextualization**
- 3. CESM Co-located Assessments
- 4. CESM Process System Assessments

Jon Petch *Lab Director*

C. McCluskey *Project Scientist,*

Justin Richling Associate Scientist

Isla Simpson **Scientist**

John Truesdale Software Engineer

+ 2 postdocs!

Janine Anquino Software Engineer

Observation process system database for streamlined model assessment

Best practices are needed for addressing representation and scale mismatches

- Contextualize and composite observation period (cloud type, aerosol conditions)
- Establish best practices for model (nudging methods, resolution)

SOCRATES

"deploy" instrument simulators in model for co-located comparisons between model and field observation data

Build a suite of single column atmosphere model (SCAM) IOPs paired with composited process system observations

 Ω

 -10 -20

-30 -40

Medeiros et al., 2023

Suite of SCAM intensive observation period (IOP)

Build a suite of single column atmosphere model (SCAM) IOPs with composited process system observations

Utilities:

- SCAM Perturbed Parameter Ensemble
- Parameterization testing
- Model tuning decision making

Looking forward – how do we do this?

- **Integrate field observations and research models with a focus on process systems**
- **Establish common best practices for field campaign design and execution**
	- "anchor" measurements that trace back to model variables
	- Observation closure studies for parameterizations testing
	- Create guidance for measurement requirements (e.g., ice nucleation, Table 1, *Burrows et al.,* 2022)
	- Δt !!
		- airmass tracers needed,
		- methods for tracking and identifying cloud lifecycle stage,
		- slow-moving platforms –or- multiple platforms

• **Other needs**

- Laboratory studies (!) that provide a starting point for e.g., SIP
- Vertical aerosol distributions (e.g., Teathered Balloon/drone measurements)
- Observations that target natural perturbations (e.g., wildfires) or efforts to conduct (safely and responsibly) cloud seeding experiments

• **Express concerns re: funding**

- Typically 3 year proposals for field campaigns is extremely challenging for bridging observations and models
- Where can we automate efforts and leverage large institutions for these services (e.g., NCAR, DOE ARM)