Do supercooled droplets freeze during
collisions and breakup?
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Molecular simulations show that
water under tension increases its freezing temperature.
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Speculation on droplet freezing during collision and breakup
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During “mechanically-induced” ice nucleation,
temperature is constant yet nucleation rate increases.

Violent motion of supercooled water will prompt the
water to freeze; and the more violent the motion, the
higher the probability of freezing. (Dorsey 1948)

The ice nucleation rate equation is
predominantly temperature dependent.

j = nucleation rate (m3s™)

—C M = chemical potential
A, C = constants
TAp?

j:AeXp(

(T = T)
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Adding pressure dependence could explain constant
temperature phenomena

L C Negative pressure =
j L A exp Water is under tension
TAp?

T |

(T, — T e

A = f( m ) + ApAv A~
i/} p=F
Neméc 2013 A

Av;s = volume difference between liquid and solid (vs — v; < 0)
T,, = melting temperature
[ = latent heat release



Experiments highlight the role of the air-water interface
during mechanically-induced ice nucleation

Increased ice-nucleation is only observed when the surface of the droplet is
stretched from its equilibrium shape, inducing curvature at the air-water interface.

Water with trace mineral oil
on silica glass substrate

Vibration on

Time (s): 0.0680

Fan Yang, Kostinski, et. al. PRE 2018 Yang et. al. APL (2015)



Curvature of the air-water interface creates Laplace
pressure.

«)Qg ___n;__,@ IH No mechanical motion is required to
produce negative Laplace pressure.

Negative Laplace pressure is produced by
concave water surfaces.

During droplet coalescence, the
air-water interface experiences
high degrees of curvature with
regions of negative pressure

(Pa)

Sykes et. al. 2020, -
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Molecular simulations demonstrate a direct quantitative link
between negative pressure and increased ice nucleation rates.

e Cyan = water
e Brown = hydrophilic substrate

e Periodic boundary conditions

e LAMMPS simulation software
(Sandia National Lab)




freezing events at each pressure.

Cooling rate
0.25 K/ns
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Ice nucleation rates are found by simulating an ensemble of
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The simulations show that negative pressure can increase
nucleation rate without changing the temperature.
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Av;s = volume difference (vs —v; < 0)

~1) order of magnitude

T,, = melting temperature
[; = latent heat release
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Negative Laplace pressure in capillary bridges produce the
expected increase of freezing temperature.

h = height of capillary bridge

Laplace pressure in the capillary
bridge: 20 cos(6)

AP = —

Expected increase in freezing temp:

TmAVlS

AT =
Ly

h

AP;

AT (K)
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A pressure enhancement factor can quantify the impact of
negative pressure on active INP concentrations.

N; (T) Number of active INP as a function of temperature.

Increase in INP activation temperature due to
ATP = 0.007TAP negative pressure (atm) from Rosky et. al. 2023.

ANz’ (T) - 5N’i (T) . ATp Increase in number of active INP due to

5T increase in activation temperatures.

E(T) = AN; Pressure enhancement factor: number of
p( ) . N; pressure-activated INP compared to original INP




Enhancement values >1 mean that active INP concentration is
more than doubled.
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Example using Fletcher 1962:

Negative pressure of ~200 atm results in
enhancement Sp = 1 at all temperatures.
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Sources of negative pressure in cloud droplets have yet to be
iInvestigated.

Any source of negative pressure in water can lead to higher ice nucleation rates.
Uncertain what sources of negative pressure are active in the atmosphere.

e Droplet coalescence
e Contact nucleation

e Hydrophobic INP at the air-water interface
o Pandey et. al. 2017
o Bieber and Borduas-Dedekind 2024

Nanometer-scale surface curvature produces hundreds of atmospheres of negative
Laplace pressure — associated with high levels of enhancement in active INP.
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Negative pressure in water after air bubbles collapse.

Lechner et. al. (2017)
Hunt and Jackson (1966) proposed that bubbles The Journal of the Acoustical

form during mechanical agitation, and that Society of America
negative pressure following bubble collapse
increases the freezing point.
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True for both homogeneous and heterogeneous ice

nucleation

Homogeneous and heterogeneous nucleation rate, MLmW
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Freezing temperature distributions are converted into nucleation rate in
each temperature bin.

Homogeneous Freezing Temp Distributions Rosky et al. 2022, Chem. Phys. Lett.
ML-mW Model, Cooling rate 0.25K/ns
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