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Focus: Aerosol-cloud-precipitation interaction

Aerosol perturbation influences 
the cloud water budget
=> Cloud radiative effect
=> Precipitation

How do microphysical processes 
mediate the aerosol effect on 
cloud water budget and forcing?

How can satellite observations 
constrain the processes to help 
reduce the forcing uncertainty? Precipitation
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a crucial role in determining cloud water response and AIE. Specifically, their interplay is likely 253 

to amplify the LWP response and the AIE forcing to aerosol perturbations.  254 

The amplification effect on AIE is also found in the comparison between BR68_FN and the 255 

default BR68 experiment in Figure 3a, but to a far more limited extent; the smaller amplification 256 

effect by using BR68 is also manifested in the limited difference in AOD and LWP between the 257 

two experiments (Figures 3b-3c, red lines). Ghan et al. (2016) has revealed that LWP is much 258 

more susceptible to the increase in cloud number concentration for SPRINTARS with KK00 259 

than for SPRINTARS with BR68; results here suggest that the larger susceptibility of LWP to 260 

changes in 𝑁𝑐 for KK00 stems partly from its less efficient depletion of cloud water than BR68, 261 

and partly (and equally, if not more, importantly) from the feedback from less efficient wet-262 

scavenging of aerosols. These can explain why MIROC5.2 exhibits more realistic AIE and hence 263 

energy balance in the PD simulation when BR68 is applied, but shows substantial cooling when 264 

KK00 is applied.  265 

 266 

 267 
Figure 3. a) Anthropogenic aerosol indirect forcing from the default simulations of MIROC5.2 with BR68 268 

autoconversion (red, solid fill) and with KK00 autoconversion (blue, solid fill) (same as in Figure 2), and from the 269 

experiments with fixed 𝑁𝑐 for wet-scavenging of aerosols using BR68 (red, grid fill) and KK00 (blue, grid fill). The 270 

error bars indicate the maximum and minimum annual mean values in the 15y simulations. b) and c) are the 271 

differences in zonal annual mean AOD and LWP, respectively, between the PD and PI simulations for each of the 272 

above model configurations. 273 

 274 

The twofold precipitation-mediated effects on AIE described above are schematically 275 

illustrated in Figure 4. The aerosol-induced increase in cloud droplet number concentration 276 

inhibits the formation of precipitation; this results in less efficient cloud-to-rain transition (Path 277 

1) and weaker wet-scavenging of aerosols (Path 2). Path 1 acts to increase LWP and pose an 278 
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Diagnostic vs Prognostic precipitation in MIROC6 
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Figure 3. Relationship between the change in annual mean CLWP and that in annual mean accretion rate from the change in aerosols from the PI to PD
conditions, simulated by (a) the DIAG model, (b) the PROG model, and (c) the PROG accretion-limited experiment. Box-whisker plots represent the 10th, 25th,
50th (black +), 75th, and 90th percentiles of the data within each bin. Plots in red show the mean.

autoconversion (13.6) as approximately an order of magnitude or more higher than that for the DIAG model
(0.14), consistent with previous studies (Gettelman, 2015; Michibata, Suzuki, Sekiguchi, et al., 2019). The
weaker ACI in the PROG model can therefore be attributed to an enhancement of accretion relative to
autoconversion because autoconversion is the only pathway through which aerosols can affect rain forma-
tion (Wood, 2005). We next investigate in-depth process-level reasons for the weakening of ACI in PROG to
understand the mechanisms underlying improvements in the compensating errors described above.

Given that PROG retains rainwater information across model time steps, in contrast to DIAG, the accre-
tion process in PROG directly responds to changes in cloud water content because the accretion rate (Pacc)
depends on the product of cloud water (qc) and rainwater (qr) mass mixing ratios. Figure 3 illustrates how
the Pacc responds differently to changes in qc using various precipitation schemes. The change in accretion
in PROG is more correlated with changes in qc (Figure 3b) than that in DIAG (Figure 3a). This means that
an increase in qc in response to increasing aerosols due to the cloud lifetime effect is partly buffered by the
enhancement of accretion in PROG, which is not present in DIAG (Figure 4).

To quantify the impact of this mechanism on ACI, we conduct an additional sensitivity experiment using the
PROG model that prevents Pacc from exceeding Paut; that is, Pacc/Paut< 1, referred to as the accretion-limited
(ACCLMT) experiment (Figure 3c). The ACCLMT experiment shows a weak correlation between the change
in qc and that in Pacc, similar to the DIAG model (Figure 3a), with a magnitude of ACI that is stronger
(-1.10 W m−2; blue open diamond in Figure 2) than that of PROG control version (PROG CTRL; -0.79 W
m−2). The CFODD statistics are also worse than those of the PROG CTRL, in particular for the larger Re

Figure 4. Schematic of the modeled cloud system response to aerosol perturbations using (a) the DIAG scheme and
(b) the PROG scheme. Thick red and blue allows between processes indicate positive and negative feedbacks to the
initial aerosol perturbations, respectively. The subscripts for mass (q) and number (N) mixing ratios, that is, “a,” “c,”
and “r,” mean aerosol, cloud, and rain, respectively. The Paut, Pacc, and Pwscav are process tendencies with regard to
autoconversion, accretion, and wet-scavenging, respectively.
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Diagnostic precipitation Prognostic precipitation

Diagnostic precipitation: Primarily one pathway (Autoconv), sensitive to 
aerosols, is active, exerting a positive feedback via wet-scavenging

Prognostic precipitation: Another pathway (Accretion), insensitive to 
aerosols, is also active, which “buffers” the cloud response to aerosols
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Satellite-based diagnostics of warm rain process
CloudSat+MODIS
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Aerosol radiative forcing (PD-PI): PROG vs DIAG

Satellite-based constraint on autoconv exerts differing impacts on forcing 
estimates b/w two precip modeling: Larger sensitivity in DIAG than PROG

This difference occurs via differing pathways of aerosol-precip coupling: 
Further constraint is required for other processes (e.g. wet-scavenging)
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13776 T. Michibata et al.: Snow-induced buffering in ACIs

Figure 3. Relationship between the change in annual mean CLWP and that in annual mean (a) RWP and (b) SWP, from the change in
aerosols from PI to PD conditions, simulated using the PROG scheme. Box–whisker plots represent the 10th, 25th, 50th (black “+”), 75th,
and 90th percentiles of the data within each bin based on the annual mean. Plots in red show the mean. The correlation coefficient (r) is given
in the figure.

Figure 4. Percentage change of global annual mean clean-sky
ERFaci in response to (red) the precipitation treatment, (blue) liq-
uid microphysics, (cyan) ice microphysics, and (green) nucleation
of new ice particles due to freezing. Error bars represent the mini-
mum and maximum ranges for each component considered in this
study.

also contribute to the ACI reduction (McCoy et al., 2020) due
to the accretion-driven buffering mechanisms (Michibata and
Suzuki, 2020), which should explain the remaining part of
the ERFaci difference.

In summary, we found that the treatment of precipitation
(PROG vs. DIAG) is the most influential factor controlling
ERFaci (red bars in Fig. 4) among all of the “tunable knobs”
associated with the various microphysical processes in our
model. It should also be emphasized that the ERFaci change
caused by the precipitation treatment (ca. 54 % in magni-
tude), absent from previous climate modeling studies, has the
potential to resolve some of the differences between satellite
estimates of ERFaci (Bellouin et al., 2013; Chen et al., 2014;
Christensen et al., 2017) and GCMs (Shindell et al., 2013;
Zelinka et al., 2014; Heyn et al., 2017). These findings need
to be tested further using other GCMs as they incorporate
prognostic precipitation in future studies.

5 Summary and future work

In this study, the sensitivities of ERFaci to various treatments
of precipitation and microphysical process representations in
a GCM have been systematically examined. As few GCMs
incorporate explicit representations of two-moment prognos-
tic precipitation with the radiative effects of precipitating hy-
drometeors – e.g., CAM6 MG2/MG3 (Gettelman et al., 2015,
2019), E3SM (Rasch et al., 2019), GISS-E3, and MIROC6
CHIMERRA (Michibata et al., 2019) – we used a single
model framework to evaluate the sensitivities. This also al-
lowed us to avoid uncertainties from inter-model differences
in parameterizations other than the targeted processes.

We found that the treatment of precipitation in GCMs
(PROG vs. DIAG) has a significant impact on the magni-
tude of ERFaci (Figs. 1 and 2), which we interpret to be

Atmos. Chem. Phys., 20, 13771–13780, 2020 https://doi.org/10.5194/acp-20-13771-2020

Another complexity: Ice process

Michibata et al. (ACP ʼ20)
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Figure 1. Geographical distribution of the annual mean clean-sky ERFaci for the (a) DIAG and (b) PROG precipitation schemes. ERFaci
is decomposed into (red) longwave and (blue) shortwave components in the (c) zonal mean field for the (dashed) DIAG and (solid) PROG
schemes.

Figure 2. ERFaci (ERFNet
aci in green; ERFLW

aci in red; ERFSW
aci in blue)

simulated from MIROC6 with different precipitation frameworks.
The ERFNet

aci values from observation-based studies (Chen et al.,
2014; Christensen et al., 2016, 2017; Douglas and L’Ecuyer, 2020)
and their probable range (box–whisker) calculated by correcting the
effect of retrieval limitations (Michibata and Suzuki, 2020) based on
Ma et al. (2018) are also shown. Error bars and plots in MIROC6
represent the minimum–maximum and median of the interannual
variability, respectively. Shaded in light–green is the uncertainty
range of ERFaci estimated from IPCC AR5 (Boucher et al., 2013).
The prognostic rain with a diagnostic snow scheme is denoted as
“PRDS”. The sensitivity experiment without snow radiative effects
is denoted as “OFF / SnwRad”.

into its SW and LW components are shown for alternate con-
figurations of precipitation in MIROC6 (Fig. 2). Figure 2
confirms that the significant reduction of ERFaci in PROG
is contributed to by both increased ERFLW

aci and weakened
ERFSW

aci , in stark contrast to previous CMIP5 model results
(Heyn et al., 2017) in which cloud-ice-induced changes to
ERFSW and ERFLW cancel each other out to result in few
net ERF changes within the DIAG framework. This differ-
ence in the present study from previous results is attributed
to the snow-induced modulation of ACI newly incorporated
into our model.

The impact of snow on ACI can be understood in more
detail using the results shown in Fig. 2, which includes two
intermediate versions of PROG, i.e., one that incorporates
prognostic rain but diagnostic snow (PRDS) to isolate the
relative impacts of rain vs. snow on ERFaci and one that rep-
resents prognostic rain and snow but without the radiative
effects of snow (OFF / SnwRad). Regarding the LW com-
ponent, the global mean ERFLW

aci of PROG (+0.7 Wm�2) is
more than twice as large as those of DIAG (+0.2 Wm�2)
and PRDS (+0.3 Wm�2). The OFF / SnwRad simulation
also shows weaker ERFLW

aci relative to the standard PROG
simulation (Fig. 2). These results suggest that the warm-
ing LW effect comes mainly from adjustments induced by
snow together with its radiative effects, in addition to cloud-
ice effects included in CMIP5 models as well as our model.
The ERFLW

aci is significant over the Indian Ocean and South-
east Asia (not shown), which is also similar to the other
model, CAM5-MARC-ARG (Grandey et al., 2018). This is
attributable to the increased ice nuclei (IN) due to biomass
burning for example, partly supporting the convective invig-
oration (Rosenfeld et al., 2014) although GCMs do not have
the capability to resolve the convective cloud systems. The
increased IN results in a faster glaciation and thus enhances
snowfall due to the WBF process (i.e., glaciation indirect ef-
fect). These mixed- and ice-phase microphysical processes
are more elaborated in the PROG scheme, and the associated
LW change induced by snow is incorporated only in PROG,
which contributes to the higher ERFLW

aci across the globe.
The PROG scheme also reduces the SW component

(ERFSW
aci ) relative to DIAG, particularly over anthropogenic

regions (Fig. 1b) in the Northern Hemisphere midlatitudes.
A well-known mechanism for the reduction in ERFSW

aci is the
enhancement of accretion with a smaller contribution from
autoconversion, as in PROG (not shown), with only the latter
process depending upon the cloud droplet number concen-
tration (Nc) (Posselt and Lohmann, 2008). The smaller con-
tribution of autoconversion in PROG mitigates the excessive
cloud water susceptibility to aerosols that occurs in DIAG
models (Gettelman et al., 2015; Michibata et al., 2019). How-
ever, Fig. 2 shows that the replacement in liquid-phase pre-

Atmos. Chem. Phys., 20, 13771–13780, 2020 https://doi.org/10.5194/acp-20-13771-2020

MIROC PROG weakens ACI forcing relative to DIAG due to snow process
Riming is the largest contributor to this “buffering”, besides scavenging
Obs-based constraints are required also for ice/mixed-phase cloud process
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Satellite-based characterization of mixed-phase clouds
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Extending rain diagnostics into mixed-phase precip
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Mixed-phase precip process linked to INP effect

Vertical microphysical structures depend on precip modeling (DIAG vs PROG)
This induces opposite impacts of INP on CRE via differing perturbations to 

mass/number budgets of cloud ice b/w DIAG & PROG

Imura & Suzuki (JCLI in revision)

Reflectivity [dBZ]

CloudSat MIROC6 DIAG MIROC6 PROG

Te
m

pe
ra

tu
re

 [℃
]

MIROC6 DIAG MIROC6 PROG

 

23 
File generated with AMS Word template 2.0 

 520 

Fig. 9. The dependencies on global-mean INP concentrations of (a, b) negative CRESW, (c, d) positive 521 
CRELW, and (e, f) CRENet relative to the CTRL experiment for (a, c, e) the DIAG and (b, d, f) the PROG 522 
schemes. Error bars in each experiment represent standard deviations for annual mean values. Blue lines 523 
indicate regressions of CREs against global-mean INP concentrations, and correlation coefficients (r) are 524 
displayed in the top left of each panel. 525 

 526 

d. Impact of precipitation bias adjustment 527 

The different sensitivities of CRE to INPs between the precipitation schemes discussed 528 

above highlight the significant role of precipitation processes, particularly snow formation, in 529 

determining the CREs induced by INPs. Therefore, it is suggested that the PROG, with a bias 530 

of earlier onset of snow formation compared to satellite observations (Fig. 5c), may also be 531 

biased in representing CRE sensitivities to INP perturbations. To assess how the precipitation 532 

process bias can change the CREs of INPs, this study conducted an additional “tuning 533 

experiment,” which changes the time constant of aggregation B from 180 to 720 seconds as a 534 
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Summary
The ACI forcing is affected by cloud microphysical process 

modeling through perturbations to cloud water budget
Satellite-based constraint on warm rain process has different 

impacts on the forcing estimate b/w DIAG & PROG via different 
representations of aerosol-cloud-precip interplay

The forcing difference also arises from ice-phase processes that 
tend to “buffer” the cloud water response to aerosols

Satellite-based process diagnostics are extended from warm rain 
into mixed-phase precipitation to elucidate how precipitation 
characteristic varies with particle size and cloud phase

Different characters of mixed-phase precipitation b/w DIAG & 
PROG link to distinct INP effects on climate via ice water budget


