Satellite-based model constraint on cloud microphysical processes and its link to radiative forcing of aerosol-cloud interaction

Kentaroh Suzuki (University of Tokyo) With contributions from: Yuki Imura, Takashi Nagao, Yuhi Nakamura

US CLIVAR Micro2Macro Workshop @University of Wyoming, Laramie October 28-30, 2024

Focus: Aerosol-cloud-precipitation interaction

Aerosol perturbation influences the cloud water budget => Cloud radiative effect => Precipitation How do microphysical processes mediate the aerosol effect on cloud water budget and forcing? How can satellite observations constrain the processes to help reduce the forcing uncertainty?

Significance of aerosol-precip coupling in radiative forcing

Diagnostic vs Prognostic precipitation in MIROC6

Diagnostic precipitation: Primarily one pathway (Autoconv), sensitive to aerosols, is active, exerting a positive feedback via wet-scavenging
Prognostic precipitation: Another pathway (Accretion), insensitive to aerosols, is also active, which "buffers" the cloud response to aerosols

Responses to *A***emission: Sensitivity to auto-conversion**

DIAG precip model is more sensitive to model cloud physics (auto-conversion)
This different sensitivity is also found in aerosol loading as well as cloud water response

Satellite-based diagnostics of warm rain process

Satellite-based model evaluation of vertical structure

-20 -10 0 10

Aerosol radiative forcing (PD-PI): PROG vs DIAG

MIROC PROG weakens ACI forcing relative to DIAG due to snow process
Riming is the largest contributor to this "buffering", besides scavenging
Obs-based constraints are required also for ice/mixed-phase cloud process

Satellite-based characterization of mixed-phase clouds

Fractional occurrences of different phase categories

How do different cloud phases relate to precip process?

Suzuki et al. (GRL in press)

Extending rain diagnostics into mixed-phase precip

Liquid-rich clouds: Precip occurrence varies with cloud-top particle size
Ice-rich clouds: Precipitating regardless of cloud-top particle size

Mixed-phase precip process linked to INP effect

Vertical microphysical structures depend on precip modeling (DIAG vs PROG)
This induces opposite impacts of INP on CRE via differing perturbations to mass/number budgets of cloud ice b/w DIAG & PROG

Summary

- The ACI forcing is affected by cloud microphysical process modeling through perturbations to cloud water budget
- Satellite-based constraint on warm rain process has different impacts on the forcing estimate b/w DIAG & PROG via different representations of aerosol-cloud-precip interplay
- The forcing difference also arises from ice-phase processes that tend to "buffer" the cloud water response to aerosols
- Satellite-based process diagnostics are extended from warm rain into mixed-phase precipitation to elucidate how precipitation characteristic varies with particle size and cloud phase
- Different characters of mixed-phase precipitation b/w DIAG & PROG link to distinct INP effects on climate via ice water budget