Satellite-based model constraint on cloud microphysical processes and its link to radiative forcing of aerosol-cloud interaction

Kentaroh Suzuki (University of Tokyo) With contributions from: Yuki Imura, Takashi Nagao, Yuhi Nakamura

US CLIVAR Micro2Macro Workshop @University of Wyoming, Laramie October 28-30, 2024

Focus: Aerosol-cloud-precipitation interaction

 Aerosol perturbation influences the cloud water budget => Cloud radiative effect => Precipitation ■ How do microphysical processes **mediate the aerosol effect on cloud water budget and forcing?** ■ How can satellite observations **constrain the processes to help**

264 energy balance in the PD simulation when BR68 is applied, but shows substantial cooling when **265 Benedict Lines Significance of aerosol-precip coupling in radiative forcing**

Diagnostic vs Prognostic precipitation in MIROC6 (-1.10 W m[−]2; blue open diamond in Figure 2) than that of PROG control version (PROG CTRL; -0.79 W

Figure 4. Schematic of the model of the model system response to a system response to a system of the DIAG setting o ■ Diagnostic precipitation: Primarily one pathway (Autoconv), sensitive to aerosols, is active, exerting a positive feedback via wet-scavenging **Prognactic precipitation: Another pathway (Accretion) incone** ■ Prognostic precipitation: Another pathway (Accretion), insensitive to **aerosols, is also active, which "buffers" the cloud response to aerosols**

Responses to **Aemission: Sensitivity to auto-conversion**

■ DIAG precip model is more sensitive to model cloud physics (auto-conversion) **This different sensitivity is also found in aerosol loading as well as cloud water response**

Satellite-based diagnostics of warm rain process

Satellite-based model evaluation of vertical structure

Suzuki & Imura (In prep.)

 $\tau_p \propto (\rho q_c)^{-\alpha} N_c^{\beta}$

 $\rho q_{c}^{}$

 τ_{p}

 $\partial(\rho q_{c})$

∂*t*

Aerosol radiative forcing (PD-PI): PROG vs DIAG

I MIROC PROG weakens ACI forcing relative to DIAG due to snow proc $\frac{1}{2}$ is the precipitation treatment, $\frac{1}{2}$ \blacksquare Riming is the largest contributor to this "buffering", besides scavengi \mathbf{r} new ice particles due to freezing. Error bars represent the minio for Ice/mixed-phase cloud process. I $2²$ CHIMERRA (Michibata et al., 2019) – we used a single **SIMIROC FROM MEARCHS ACTIONCING FRIE 2014; Christen et al., 2014; Christen et al., 2014, 2016, 2016, 2016, 2016, 2017; Douglas and Lieu** and the their probability calculated by computer α ■ MIROC PROG weakens ACI forcing relative to DIAG due to snow process θ ffor in θ ["] hosides soquanding $\frac{1}{2}$ model is the camera et al., $\frac{1}{2}$ ■ Obs-based constraints are required also for ice/mixed-phase cloud process ■ Riming is the largest contributor to this "buffering", besides scavenging

Satellite-based characterization of mixed-phase clouds

Fractional occurrences of different phase categories

Extending rain diagnostics into mixed-phase precip

■ Liquid-rich clouds: Precip occurrence varies with cloud-top particle size ■ Ice-rich clouds: Precipitating regardless of cloud-top particle size

Mixed-phase precip process linked to INP effect

 Vertical microphysical structures depend on precip modeling (DIAG vs PROG) ■ This induces opposite impacts of INP on CRE via differing perturbations to **mass/number budgets of cloud ice b/w DIAG & PROG** $\frac{1}{2}$ fig. $\frac{1}{2}$ fig. $\frac{1}{2}$ on $\frac{1}{2}$ negative CRE $\frac{1}{2}$ negative CRESW, $\frac{1}{2}$ negative CRESW, $\frac{1}{2}$ Fore impacts of the CTRL examinating portative to the CHRL experiment for $\frac{1}{2}$ 523 schemes. Error bars in each experiment represent standard deviations for annual mean values. Blue lines

Summary

- ■The ACI forcing is affected by cloud microphysical process **modeling through perturbations to cloud water budget**
- ■Satellite-based constraint on warm rain process has different **impacts on the forcing estimate b/w DIAG & PROG via different representations of aerosol-cloud-precip interplay**
- The forcing difference also arises from ice-phase processes that **tend to "buffer" the cloud water response to aerosols**
- ■Satellite-based process diagnostics are extended from warm rain **into mixed-phase precipitation to elucidate how precipitation characteristic varies with particle size and cloud phase**
- ■Different characters of mixed-phase precipitation b/w DIAG & **PROG link to distinct INP effects on climate via ice water budget**