Parameterizing Vertical Turbulent Mixing Coefficients for The Ocean Surface Boundary Layer Using Machine Learning

Modeling Vertical Diffusivity for OSBL using Machine Learning

Aakash Sane (Princeton University / GFDL-Affiliate)

Brandon Reichl, Alistair Adcroft, Laure Zanna

m2lines.github.io

Parameterizing Vertical Turbulent Mixing Coefficients for The Ocean Surface Boundary Layer Using Machine Learning

Modeling Vertical Diffusivity for OSBL using Machine Learning

Aakash Sane (Princeton University / GFDL-Affiliate)

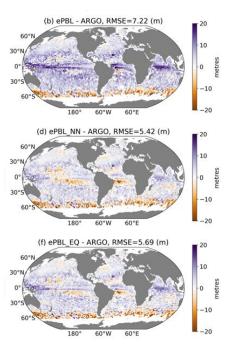
Brandon Reichl, Alistair Adcroft, Laure Zanna

Key points

1. Control – baseline mixing scheme

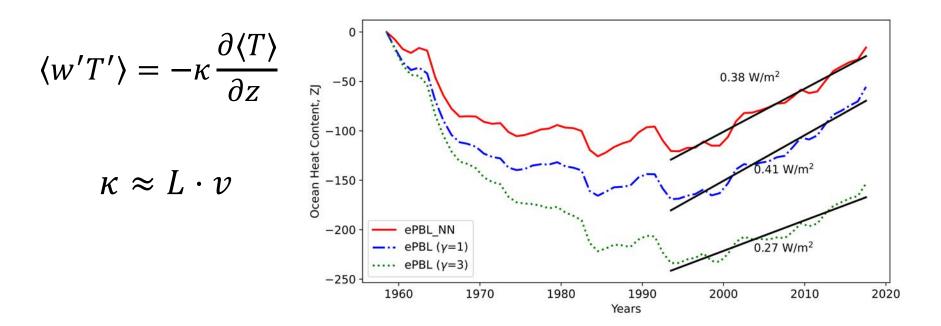
2. Neural Network diffusivity from higher moment scheme

3. With equations that approximate neural networks – similar skill.
Enables Interpretation of neural network. Finds deficiency in baseline

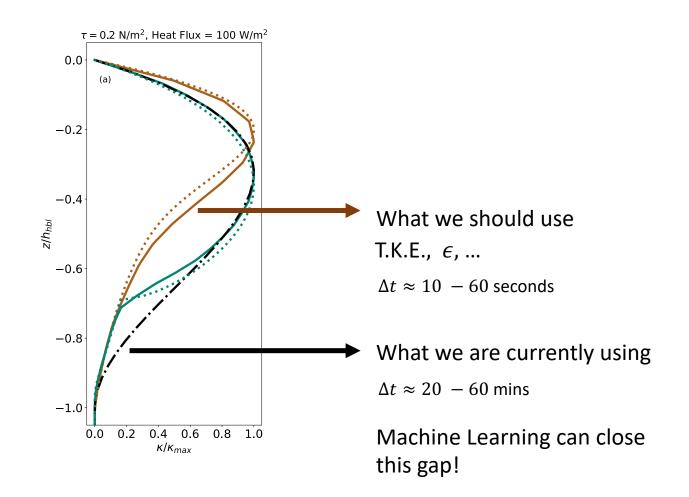


m2lines.github.io

Vertical mixing (OSBL) uncertainty



Sane et al. (2023), JAMES

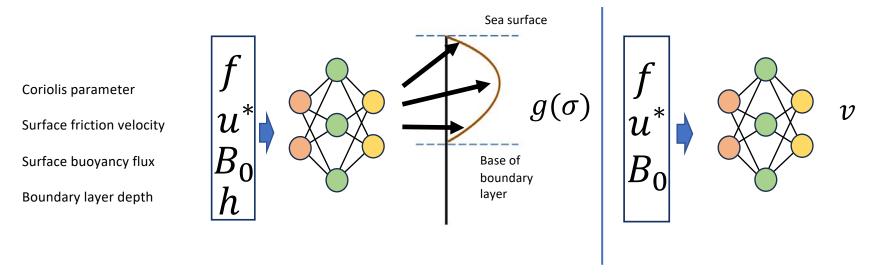


Neural network approach: $\kappa = g(\sigma) \cdot h \cdot v$

Training data: General Ocean Turbulence Model (1-D turbulence model), Second moment closure schemes, inexpensive, κ is stored as output. Neural network approach:

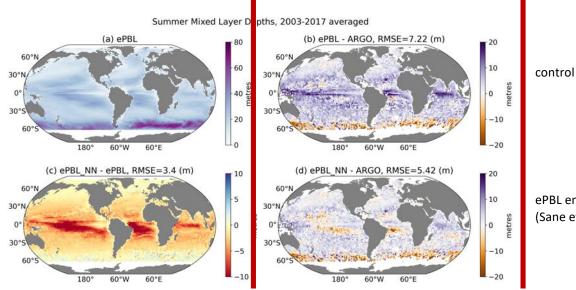
$$\kappa = g(\sigma) \cdot h \cdot v$$

Training data: General Ocean Turbulence Model (1-D turbulence model), Second moment closure schemes, inexpensive, κ is stored as output.



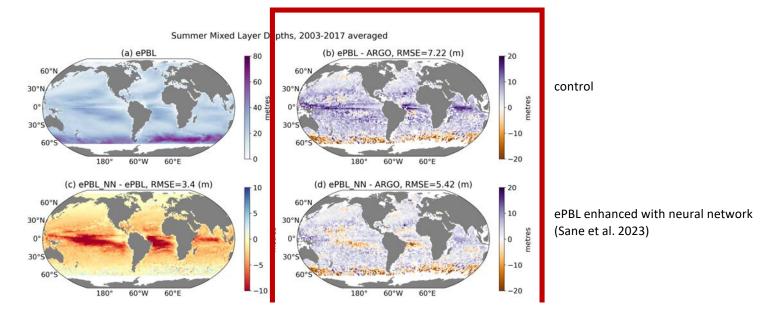
 κ - neural network is used in the ePBL mixing scheme (Reichl & Hallberg, 2018)

JRA forced results (MOM6, ¼° grid, OM4): Summer Mixed Layer Depth



ePBL enhanced with neural network (Sane et al. 2023)

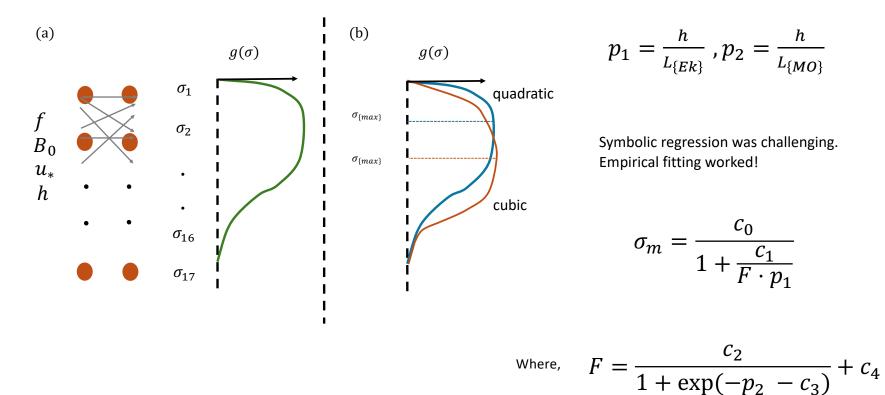
JRA forced results (MOM6, ¼° grid, OM4): Summer Mixed Layer Depth



- 1. Neural network enhanced diffusivity improves the physics.
- 2. Can we interpret what the networks are doing with equations? YES
- 3. And replace the networks? YES

Equation Discovery: Shape Function

$$\kappa = g(\sigma) \cdot h \cdot v$$



Equation Discovery: Velocity scale using Genetic Programming

$$x = \left(\frac{1}{u_*}\right) \sqrt{\frac{|B|}{f}}$$

$$B: \text{Surface buoyancy flux}$$

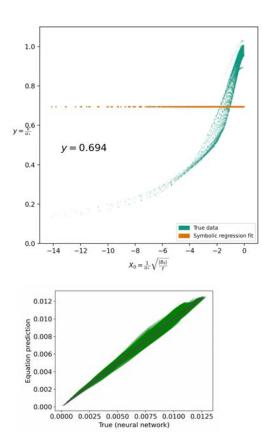
$$u_*: \text{Surface friction velocity}$$

$$f: \text{Coriolis parameter}$$

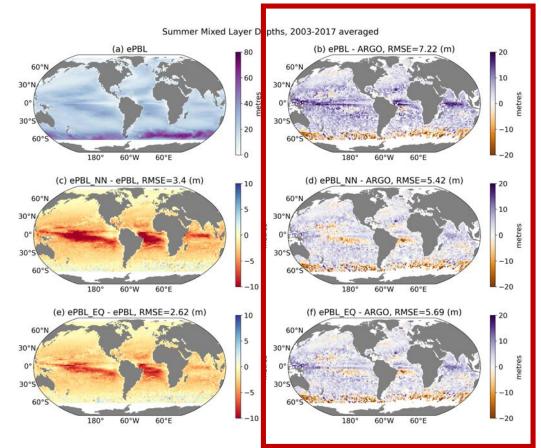
Stable:
$$\frac{v}{u_*} = -\frac{0.1448}{x - 1.12 + \frac{0.476}{x - 0.6}} + c_0$$

Unstable:
$$\frac{v}{u_*} = -\frac{0.1x\sqrt{\frac{f}{\Omega}}}{1 + \frac{(45 \ e^{-\frac{f}{\Omega}} + 3.29)u^2 f}{B}} + c_1$$

$$\kappa = g(\sigma) \cdot h \cdot v$$



JRA forced results (MOM6, ¼° grid, OM4): Summer Mixed Layer Depth

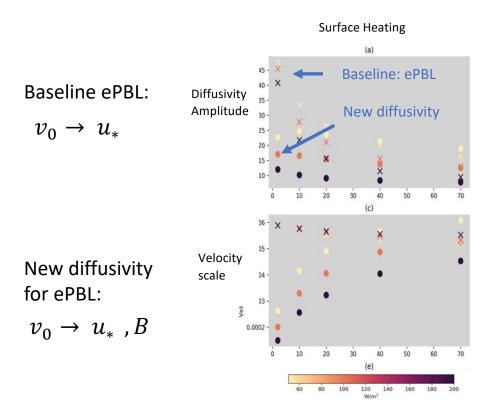


Baseline control scheme

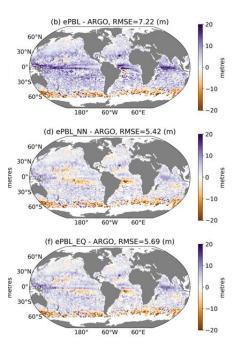
ePBL enhanced with neural network (Sane et al. 2023)

ePBL enhanced with discovered equations

What was deficient in baseline scheme? \rightarrow cause of MLD bias?



Summer MLD bias



Concluding remarks:

- 1. Complexity in higher order schemes can be captured and brought into first order closures to assess impacts on longer timescale simulations.
- 2. NN reduces some biases in ocean only experiments.
- 3. Equations that replace NNs and approximate second moment closures reduce biases at a much lower cost.
- 4. Conservation laws satisfied due to predicting fluxes.
- 5. Enhanced diffusivity (from GLS) has lower amplitude for surface heating conditions most likely cause of summer MLD improvements.

Thank You

JAMES Journal of Advances in Modeling Earth Systems*

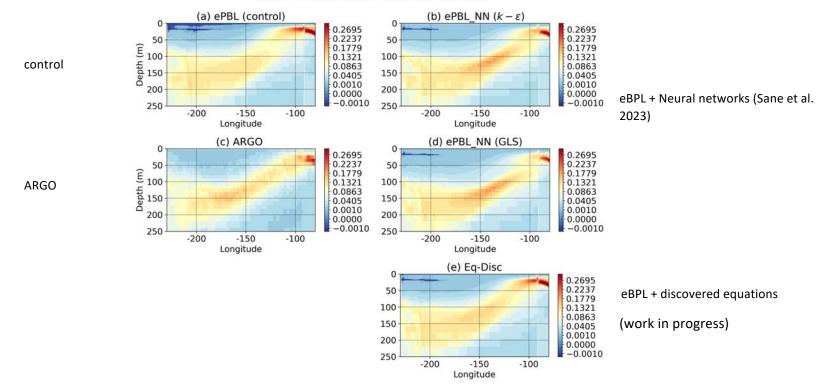
Research Article 🔂 Open Access 🕼 😧

Parameterizing Vertical Mixing Coefficients in the Ocean Surface Boundary Layer Using Neural Networks

Aakash Sane 🔀, Brandon G. Reichl, Alistair Adcroft, Laure Zanna

First published: 23 October 2023 | https://doi.org/10.1029/2023MS003890 | Citations: 1

JRA forced results (MOM6, ¼° grid, OM4): Pacific Equator Vertical Transect



aT/az (°C/m) at Equator, 2003-2017 averaged

Shape function accuracy:

