The ‘energy journey’ of a M2 tidal beam across the Tasman Sea
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e What are internal tidal beams?

L tdilihsml ) pressure amplitude

a) Altimetry (Zhao et al., 2018)
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one mode

Sum them up...
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From Gerkema 2008
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ey The Tasman Sea Internal Tide Beam

Waterhouse 2018

Amplitude

Y\
!
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tonal The Tasman Sea Internal Tide Beam

Relative Vorticity

MOMB6 regional Tasman Tide = S mmso
- ERAS5 surface, GLORYS ,
Open Boundaries o
- Rossby radius similar to : = : -
M2 wavelength 7 / e
~100-vs 200km ) 004
- Beam is dominated by M2
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Nafioral Motivation:

What happens to the IW beam energy, and does the answer
depend heavily on the horizontal resolution?

We've talked about ‘eddy resolving’ and
‘eddy permitting’ models. What about
for internal waves?

Internal waves cascade to smaller
scales before dissipation can occur.
Inclusion of more IW spectrum might
give different energy pathways for the
beam?

arying Stratification

A R‘nue location of wave breaking

(Cartoon | drew in first year)
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etorel Motivation:
Research Questions

1. What portion of the energy scatters to
higher modes, dissipates, or is transferred
to eddies and other non waves features?

2. Does this picture change under different
model resolutions

Suite of 12 models:
3 different resolutions (20,40,80th

4 scenarios:
Everything, no tide, quiescent flat, bathymetry,




= (g Method: Isolating our waves

= University
Flow Field
1. Lagrange Filter from Shakespeare et al 2021
- Isolate our waves on temporal scales
- Enables Cross Scale Energy Transfer calculations
via Coarse Graining l

(we’ll come back to this later) RN

2. Vertical Modal decomposition (after temporal filter) -

- Splits things up into the spatial scales m
- Informed by the dispersion relation of the waves A~~~

themselves
+

- Quite fiddly to get right! Ask if you want to use some
code
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Filtered M2 along beam velocity
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Method 1: Temporal Filter

This tells us that there
are some differences
between our
experiments, and
spatially

But doesn’t tell us why
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Method 1: Temporal Filter

= University

Lagrange Filtered Kinetic Energy: eddy vs no eddy
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No real difference!
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= e Method 1: Coarse Graining

Using the empirical framework from Aluie, Barkan and others

Effectively recovers a quantity similar to reynolds stress between your scales, which
becomes energy in the flux form of the momentum equation

d | l transport — 12 — —
a0 2[ TV = po VU, " +p, g1,

Scale <=L Energy transfer between scales

From Aluie et al. 2018



= e Method 1: Coarse Graining

Temporal Cross Scale Energy Transfer: Waves to Eddies
Using a filter Lagrange filter at 1.2f

Energy transfer from small to larger scales
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= i Method 1: Coarse Graining

Temporal Cross Scale Energy Transfer: Waves to Eddies
Using a filter Lagrange filter at 1.2f
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Empirically, it looks like we have net energy from internal wave to eddies!
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Spatial variation of eigenfunction
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Method 2: Modal Decomposition

Assume flat bathymetry and slowly varying N in x,y

_ i(xk1+yko—wt)
Assume linear wave decomposition i.e - (:13, Y%, t) 14 (Z) €

Solve the ODE for every point in space to get the vertical
eigenfunctions W for each mode. W(0) = W(H) = 0

Project velocities on to eigenfunctions (next slide)

Eigenfunctions for Vertical and Horizontal velocities
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= i=s,  Method 2: Modal Decomposition

Realistic Topography
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= =" Method 2: Modal Decomposition
Directionally Filtered Kinetic Energy

Compare ‘| Seasonal Variability
Experiments
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wes  Method 2: Modal Decomposition
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KE decomposition by vertical mode
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Dol Next Steps:

1. Temporal analysis: Quantify the M2 kinetic energy, dissipation and cross scale transfer across our
different experiments. Are eddy interactions significant?

2. Modal Decomposition: Analyse the way the modal structure changes. Is this affected by eddies or
topography?

1. Compare the energy pathways under
different resolutions

This is very much a work in progress!!

We’d be very grateful for suggestions, ideas
or feedback

ashley.barnes@anu.edu.au

https://github.com/ashjbarnes/tasman-tides
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