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Machine Learning: a tool with many uses.

Do it faster/cheaper

Do it better

Learn something new



Machine Learning: a tool with many uses.

1
Predicting the Errors of Forecast Systems
e.g. Chapman et al. (2019), Cahill et al. (in review), Pan et al. (2021), Gregory et 
al. (2023)
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1
ML to improve climate models 
[e.g. parameterizations]2 Improved Model Parameterizations

e.g. Rasp et al. (2018; PNAS); Schneider et al. (2017; GRL); O’Gorman and Dwyer (2018); 
Beucler et al. (2020; PRL); Dagon et al. (2020); Brenowitz and Bretherton (2018)
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Machine Learning: a tool with many uses.

ML for post-processing data
[e.g. data compression, data analysis]1
ML to improve climate models 
[e.g. parameterizations]2

Deep-learning weather + climate 
emulators5

Combine disparate datastreams to 
explore complex systems3
Merging observations and model data4

Learn new things!7

Equation Discovery
e.g. Zanna & Bolton (2020)

Climate change communication6



OUR GOAL:
To develop and implement AI 
tools to leverage imperfect 
climate models in support of 
earth system prediction across 
time and space.

https://futurism.com/parallel-universes-many-worlds-theory

Climate models provide inaccurate, but 
invaluable “parallel universes” to mine for 
information



Time Remaining Until Critical Warming 
Thresholds are Reached

? ? ? ?

adapted from IPCC AR6 (2023); Summary for Policymakers



Diffenbaugh & Barnes (2023)

Time Remaining Until Critical Warming 
Thresholds are Reached



years until warming threshold is reached
+ uncertainties

Diffenbaugh & Barnes (2023)

Train neural network to ingest a single annual 
temperature map and predict the number of years until 
a warming threshold is reached

σ

Trained on annual maps from 10 realizations from across 
multiple climate models

𝛾

μ

τ



Diffenbaugh & Barnes (2023)

Train neural network to ingest a single annual 
temperature map and predict the number of years until 
a warming threshold is reached

Climate Model Results

years until warming threshold is reached
+ uncertainties

σ

Trained on annual maps from 10 realizations from across 
multiple climate models

𝛾

μ

τ



Use the trained AI model to predict thresholds based 
on maps of the observed climate

Observations
Berkeley Earth Surface Temperature

Diffenbaugh & Barnes (2023)
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Use the trained AI model to predict thresholds based 
on maps of the observed climate
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Pinatubo eruption



Use the trained AI model to predict thresholds based 
on maps of the observed climate

Diffenbaugh & Barnes (2023)

higher likelihood of reaching 2°
C in the Low scenario than some 
previous assessments — 
although the possibility it could 
be avoided is not ruled out.

Pinatubo eruption



Regional transfer learning provides new insights
Barnes, Diffenbaugh & Seneviratne (2024)

train on climate 
model data

predict observations

Transfer Learning



Regional transfer learning provides new insights
Barnes, Diffenbaugh & Seneviratne (2024)

train on climate 
model data

predict observations

fine-tune with limited 
observations (0.8C, 1.0C, 1.2C)

predict observations

Transfer Learning



Regional transfer learning provides new insights

tra
nsfer le
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Barnes, Diffenbaugh & Seneviratne (2024)



Regional transfer learning provides new insights
Barnes, Diffenbaugh & Seneviratne (2024)



But how did the network update 
its prediction?

…what if we could learn which regions of the globe were most 
relevant to improving the prediction with observations?



Opening the 
Black Box with 
XAI
In the past few years multiple papers have 
come out demonstrating the use of AI 
explainability methods for earth science



Attribution heatmaps are largely 
consistent with how many climate 
scientists pose questions

Prediction
of 1 sample

Pr(cat)=.8

Pr(cat)=.8LRP
of 1 sample

XAI Attribution 
Methods

e.g. Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing



XAI Attribution 
Methods
Attribution heatmaps are largely 
consistent with how many climate 
scientists pose questions

Prediction
of 1 sample

Pr(cat)=.8

Pr(cat)=.8Attribution
of 1 sample

e.g. Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing
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A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAI.
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Reasons to care about XAI
A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAI.

Our ultimate goal is to understand 
causality. XAI does not give us this. 
But it is a step in the right direction. 



Explainable AI (XAI) will be essential.



Regional transfer learning provides new insights

tra
nsfer le

arning

base netw
ork

Barnes, Diffenbaugh & Seneviratne (2024)



base netw
ork

Regional transfer learning provides new insights
Barnes, Diffenbaugh & Seneviratne (2024)

Changes in XAI SHAP values after transfer 
learning reveal relevant climate model errors

tra
nsfer le

arning



forced 
response

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



#40

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



#32

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



#32

global warming projections 

AI to leverage imperfect climate 
models to better constrain future 
projections by fusing simulations and 
observations. 

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



2020-2050 #32

multi-year predictability

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5

Prepare for weather + climate hazards
Anticipate the masking of the intended effects of climate policies

AI to explore earth system predictability 
weeks-to-years in advance.



Predict ocean temperatures 5 years later
Davenport, Barnes & Gordon (2024)

warm

neutral

cool

future sea surface 
temperatures*
for one grid point
[0-5 years]

...
...

*can predict a range of variables

past sea-surface 
temperatures

0-1 years before

1-2 years before

2-3 years before

3-8 years before



Focusing on when the AI is most confident leads to skillful predictions

Overall Accuracy

Trained on climate model MPI-ESM-1-2-LR [3,630 years of data]
Evaluated on climate model MPI-ESM-1-2-LR

CLIMATE MODEL DATA

Davenport, Barnes & Gordon (2024)
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Focusing on when the AI is most confident leads to skillful predictions

Overall Accuracy Accuracy for 40% most 
confident predictions

Accuracy for 20% most 
confident predictions

Trained on climate model MPI-ESM-1-2-LR [3,630 years of data]
Evaluated on climate model MPI-ESM-1-2-LR

>60-80% accuracy!

CLIMATE MODEL DATA

Davenport, Barnes & Gordon (2024)



Leveraging climate model data provides skillful predictions of the real world

Overall Accuracy Accuracy for 40% most 
confident predictions

Accuracy for 20% most 
confident predictions

Trained on climate model MPI-ESM-1-2-LR [3,630 years of data]
Evaluated on observations [ERSSTv5; 169 years of data]

OBSERVATIONS

Davenport, Barnes & Gordon (2024)



Compare climate model-based network skill
Davenport, Barnes & Gordon (2024)

Persistence Baseline (ERSSTv5)



Compare climate model-based network skill
Davenport, Barnes & Gordon (2024)



XAI reveals sources of predictability that vary in time and space
Toms, Barnes & Hurrell (2021)

Predicting 5-year average surface temperature at each grid point
Applied to 1200 years of CESM2 control simulation

Prediction of average 
land surface 
temperature anomaly 
over the next 5 years

XAI



XAI reveals sources of predictability that vary in time and space
Toms, Barnes & Hurrell (2021)

Predicting 5-year average surface temperature at each grid point
Applied to 1200 years of CESM2 control simulation

XAI
Mexico California

Midwest Canada

Prediction of average 
land surface 
temperature anomaly 
over the next 5 years



XAI reveals sources of predictability that vary in time and space
Toms, Barnes & Hurrell (2021)

Predicting 5-year average surface temperature at each grid point
Applied to 1200 years of CESM2 control simulation

XAI

Prediction of average 
land surface 
temperature anomaly 
over the next 5 years

34% of samples

24% of samples

42% of samples



Interpretable AI

Rudin (2019)

Explainable AI tells us where, but not how. 
Interpretable AI explicitly incorporates the decision-making process into its structure.
Models are interpretable by design.

😔



Interpretable AI
Explainable AI tells us where, but not how. 
Interpretable AI explicitly incorporates the decision-making process into its structure.
Models are interpretable by design.

Our Current Goal: 
work toward building AI models that mimic 
scientific human reasoning to improve 
intrinsic interpretability



Climate Model

Method of Analogs
Barnes et al. (2022) 

Rader and Barnes (2024)
Gordillo and Barnes (under review)

Fernandez and Barnes (in prep)



Analogs for seasonal-to-decadal prediction

time
(years)

potential 
analog

potential 
analog

potential 
analog

potential 
analog

our state of interest 
(a map of the current climate)
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Analogs for seasonal-to-decadal prediction

time
(years)

not an
analog ANALOG not an

analog ANALOG

our state of interest 
(a map of the current climate)

use how the climate evolved after the analog events to make an 
ensemble forecast for our state of interest



Analog Forecasts for North Atlantic Sea Surface Temperature

Use:
SST in Year 0-4

To Predict:
North Atlantic SST in Year 5-9

Target 
Region

* a perfect model application using the MPI Grand Ensemble



Traditionally, if two states “look similar” it means they have the 
smallest difference over the entire globe, or a predefined region. 

abs(               )
state of 
interest

potential 
analog

difference

This assumes that every region is equally important for determining how the 
climate system will evolve. We can do better.



Use AI to learn regions most relevant for a “good analog”
Fernandez and Barnes (in prep)



Use AI to learn regions most relevant for a “good analog”
Fernandez and Barnes (in prep)

Take this mask and use it to determine the “best analogs” in 
the standard, non-AI, way.



Use AI to learn regions most relevant for a “good analog”

Prediction 
Region

Rader and Barnes (2024) 



Identify the analogs with the weighted mask

Predicting 5-yr 
SST in the North 

Atlantic

Rader and Barnes (2024) 



Identify the analogs with the weighted mask

Some regions look 
similar

Rader and Barnes (2024) 



Identify the analogs with the weighted mask

Some regions look 
different

Rader and Barnes (2024) 



Identify the analogs

Maps look similar 
in the precursor 

regions

Rader and Barnes (2024) 



Forecasts are skillful
Rader and Barnes (2024) 

CLIMATE MODEL RESULTS



These optimized analogs rival the skill of dynamical models
Rader and Barnes (2024) 

OBSERVATIONS



This approach is 
interpretable AI!
While one could train a massive black-box 
AI model to make these predictions, the 
benefit of analogs is that they are easily 
understood.

AI is merely used to learn the optimal 
mask for choosing the analogs. The masks 
are the “XAI”.

Not a new Idea, but renewed interest!
e.g. Lorenz (1969),
Menary et al. (2021),
Lou et al. (2023),
Mahmood et al. (2021),
Befort et al. (2020),
Ding et al. (2018, 2019),
Toride et al. (2024) Rader and Barnes (2024) 

Learned ENSO Prediction Mask



Analogs can help constrain projections → initialized predictions

Observations

Analog Prediction

Top Analogs

CMIP6 Models

time

initialization

* now we choose analogs from the expansive CMIP6 ensemble

Fernandez and Barnes (in prep)



Analogs can help constrain projections → initialized predictions
Fernandez and Barnes (in prep)

analog
range

CMIP6 range

truth

Yrs 5-7 Surface Temperature Anomalies
Western U.S.



Analogs can help constrain projections → initialized predictions
Fernandez and Barnes (in prep)

analog
range

CMIP6 range

truth

Yrs 5-7 Surface Temperature Anomalies
Western U.S.

Emergence of the forced response 
that is relevant for prediction



These are exciting times! XAI will be key to advancing science.

Climate change influence the 
performance of AI models

Generative AI for downscaling, 
ensembling, data assimilation…

AI for weather & climate 
model replacement

Image: NVIDIA



Thank you.
eabarnes@colostate.edu
https://barnes.atmos.colostate.edu
github: eabarnes1010


