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MACHINE “

LEARNING




Do it faster/cheaper
Do it better

Learn something new

Machine Learning: a tool with many uses.



. Predicting the Errors of Forecast Systems
ML for pOSt-pl’OCGSSIng data e.g. Chapman et al. (2019), Cahill et al. (in review), Pan et al. (2021), Gregory et

le.g. data compression, data analysis] at (202
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Machine Learning: a tool with many uses.



ML for post-processing data
[e.g. data compression, data analysis]

ML to improve climate models Improved Model Parameterizations

[9-9- parameterlzatl0n$] e.g. Rasp et al. (2018; PNAS); Schneider et al. (2017, GRL); OGorman and Dwyer (2018);
Beucler et al. (2020; PRL); Dagon et al. (2020); Brenowitz and Bretherton (2018)

Machine Learning: a tool with many uses.



ML for post-processing data
[e.g. data compression, data analysis]

ML to improve climate models
[e.g. parameterizations]

Combine disparate datastreams to
explore complex systems

Machine Learning: a tool with many uses.



ML for post-processing data
[e.g. data compression, data analysis]

ML to improve climate models
[e.g. parameterizations]

predict observations ]
Combine disparate datastreams to
explore complex systems

train on climate
model data

Merging observations and model data

Machine Learning: a tool with many uses.



ML for post-processing data
[e.g. data compression, data analysis]

ML to improve climate models
[e.g. parameterizations]

predict observations ]
Combine disparate datastreams to
explore complex systems

train on climate
model data

Merging observations and model data ) )
9ing predict observations

fine-tune with limited
observations

Machine Learning: a tool with many uses.



Experimental: AIFS (ECMWF) ML model: 500 hPa

ML for post-processing data geopotential height and 850 hPa temperature

[e.g. data compression, data analysis]

Base tme: Tue 26 Mar 2024 06 UTC Vald me: Sun 31 Mar 2024 00 UTC (+114n) Area : Evrope

arXiv:2311.07222 (physics)

ML to improve climate models
[e.g. parameterizations]

[Subenitted on 13 Nov 2023]

Neural General Circulation Models

Dmitril Kochkov, Janni Yuval, lan Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, James Lottes, Stephan
Rasp, Peter Duben, Milan Kiower, Sam Hatfield, Peter Sattaglia, Alvaro Sanchez-Gonzalez, Matthew Willson,
Michael P. Brenner, Stephan Hoyer

Download PDF

General circulation models (GCMs) are the foundation of weather and climate prediction. GCMs
are physics-based simulators which combine a solver for larg; ! ics with

Combine disparate datastreams to

l. l. t tuned representations for small-scale processes such as cloud formation. Recently, machine
eXp Ore Comp eX Sys emS learning (ML) models trained on is data achieved le or better skill than GCMs
i E 1has Moweuac these models have not demonstrated improved
Physics > Atmospheric and Oceanic Physics for long-term weather and climate
arXiv:2310.02074 (physics) combines a differentiable solver for
Sk ook a03a] id show that it can generate forecasts of
[Submitted on t
~ 2 imate on par with the best ML and physics-
ACE: A fast, skillful learned global atmospheric model for ML models for 1-10 day forecasts, and with the
climate predlctlon recasts ensemble prediction for 1-15 day

H H , NeuralGCM K cli
Mel‘glng Observatlons and mOdel data Oliver Watt-Meyer, Gideon Dresdner, Jeremy McGibbon, Spencer K. Clark, Brian Henn, James Duncan, Noah D. Loy o8 anscaireltack dmas

ultiple decades, and climate forecasts with 140

Brenowitz, Karthik Kashinath, Michael S, Pritchard, Boris Bonev, Matthew E. Peters, C|
Physics > Atmospheric and Oceanic Physics
Download PDF [Submitted on 22 Mar 2024]

An ensemble of data-driven weather prediction
Existing ML-based atmospheric models are not suitable for climate predict| models for operational sub-seasonal forecasting

long-term stability and physical consistency. We present ACE (AI2 Climate
. . 9 b i ty .p ¥ hine I 7 334 p £ (A 3 han A. Weyn, Divya Kumar, Jeremy Berman, Najeeb Kazmi, Sylwester
Deep' learnlng weather * Cll mate parameter, autoregressive machine learning of an COMP 4 1ocek, Pete Luferenko, Kit Thambiratnam
| global heric model. The formulation of ACE allows evalug
em ulators such as the conservation of mass and moisture. The emulator is stable for We prese an aneratitis:feady multi-madel ensemble weather forkcasting:
conserves column moisture without explicit constraints and faithfully reprd ~ SYstem which uses hybrid data-driven weather prediction models coupled with the
5 Centre for Medi ge Weather {ECMWF) ocean model to
model's climate, outperforming a challenging baseline on over 80% of trac| predict global weather at 1-degree resolution for 4 weeks of lead time. For
requires nearly 100x less wall clock time and is 100x more energy efficient p of 2-meter temp our on average the
model using typically available resources. raw ECMWF d-rangs le by 4-17%, depending on the lead time.

However, after applying statistical bias the ECMWF ble is about
3% better at 4 weeks. For other surface parameters, our ensemble is also within a

- - " = few percentage points of ECMWF's ensemble. We demonstrate that it is possible to
achine Learning: a tool with many uses, ==
u Ll model with data-di weather models.
Subjects: Atmospheric and Oceanic Physics (physics.ao-ph). Machine Learning (¢s.LC)

Cite as:  arXiv.2403.15598 [physics.ao-ph)
{or arXiv:2403,15598v1 [physics.ao-ph] for this version)




ML for post-processing data

[e.g. data compression, data analysis] Climate change communication

ML to improve climate models
[e.g. parameterizations]

Combine disparate datastreams to
explore complex systems

Merging observations and model data

Deep-learning weather + climate
emulators

Machine Learning: a tool with many uses.
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ML for post-processing data

[e.g. data compression, data analysis] Climate change communication

ML to improve climate models

[e.g. parameterizations] Learn new things!

Combine disparate datastreams to

ot iy 0 : < (C-¢D (D
explore complex systems *“_»_c Aol SuT ~ kprV - (( & <2<+<D>

Equation Discovery

e.g. Zanna & Bolton (2020)

Merging observations and model data

Deep-learning weather + climate
emulators

Machine Learning: a tool with many uses.



OUR GOAL.:

To develop and implement Al
tools to leverage imperfect
climate models in support of
earth system prediction across
time and space.

Climate models provide inaccurate, but
invaluable “parallel universes” to mine for
information




Time Remaining Until Critical Warming
Thresholds are Reached
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temperature anomaly

Time Remaining Until Critical Warming
Thresholds are Reached
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Trained on annual maps from 10 realizations from across
multiple climate models

years until warming threshold is reached
+ uncertainties

Train neural network to ingest a single annual
temperature map and predict the number of years until
a warming threshold is reached @
‘ & Diffenbaugh & Barnes (2023)
X



. L Climate Model Results
Trained on annual maps from 10 realizations from across &5

multiple climate models training

40 1 validation

20 4 ® testing

-20 4
-40
-60
-80

testing
MAE = 2.7 yrs.

years until warming threshold is reached T 1T
+ uncertainties -80 -60 -40 20 0 20 40 60
true number of years

Train neural network to ingest a single annual

temperature map and predict the number of years until

a warming threshold is reached @
r Diffenbaugh & Barnes (2023)
X



Observations
Berkeley Earth Surface Temperature

-4 -2 0 2 4
temperature anomaly (relative to 1951-1980)

Use the trained Al model to predict thresholds based
on maps of the observed climate Q
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Pinatubo eruption
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Pinatubo eruption
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Pinatubo eruption
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Use the trained Al model to predict thresholds based
on maps of the observed climate @
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Transfer Learning

/‘{ predict observations ]

train on climate
model data

Regional transfer learning provides new insights

X
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Transfer Learning

/‘{ predict observations ]

[ train on climate ]

model data

predict observations

fine-tune with limited
observations (0.8C, 1.0C, 1.2C)

Regional transfer learning provides new insights

O§
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= Smoothed Berkeley Observations
wwe Base-CNN Initialized with 2023 Observations
Transfer-CNN Initialized with 2023 Observations
CMIP6 Projections
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Regional transfer learning provides new insights
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But how did the network update
its prediction?

what if we could learn which regions of the globe were most
relevant to improving the prediction with observations?



MAKING THE BLACK BOX
MORE TRANSPARENT

Journal of Advances in
Modeling Earth Systems

JAME

Opening the
Black Box with

In the past few years multiple papers have
come out demonstrating the use of Al
explainability methods for earth science

Arer MG, Rrans Lactnqust, Davo Jorn Gaant I, G. Eu Jencnsen,

Machine learning model interpretation and visualization focusing on

ARTICLE
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for the Geosciences: Applications
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Benjamin A Toms' O, Eirabeth A. Barnes® ', and tmme Ebert Uphal™*

meteorologcal domans ane introduced and analyzed.

LeCun

the world’s best Go
medical diagnosis (Rakhlin et al. 2018), and galaxy

achine learning (ML) and deep learning (DL: A 1.2015), of
al ML (g, linear regn been used i mete-
throughs across a variety of fields, including  oralogy since at least the 19505 (Malone 1955), and —

(Silver et al. 2016, 2017), ML has been used extensively to forecast convective
hazards since the mid-1990s. Kitzmiller et al. (1995)
use linear segression to forecast the probability of

toenadoes, large hal, or damaging wind: Billet et al.

ity and size; Mlnb.an and Stampf (1996, 1998) use

nearal networks to forecast the probability of torna-
o

and Wist (2001) use neural netwoeks to forecast hail

size. Gagne et al. (2013, 2017a) use random foeests to

Loday s McGovern
ctal. (2014) and Williams (2014) use random fosests

JuLy 24 BOMMER ET AL

Finding the Right XAT Method—A Guide for the Evaluation and Ranking of
Explainable Al Methods in Climate Science

PHILINE LOU BOMMER*™ MARLENE KRETSOHMER ™ ANNA HEDSTROM*™ DILYARA BAREEVA "
MARINA M.-C. HOHNE* /%

* Understandable Machine Intelligence Lab, Tecknical University Berii, Bertin, Germany
" Deparonent of Dass Science, ATB, Powsdam, Germany
* Leipzig Instituse for Meteorology, University of Leipziy. Leipzis. Germany
* Deparmment of Meseorology, University of Reading, Reading, United Kirgdom
* Institute of Compuser Science — University of Potsdam, Potsdam, Germany
* Berlin nstiute for the Foundations of Learning and Data, Beriin, Germany
¥ Machine Learning Growp, UIT The Arcric University of Norway, Tromse, Norway

(Manuscript received 25 August X031, i final form 8 March 2024, accepted 19 March 2024)

ABSTRACT: Explainable arificial intellipeace (XAT) methads shed light on the predictions of machin learning alge
rithms. Several differest approaches exist and have already been applied in climate science. However, usually missing
ground truth cxplasations complicate their evaluation and comparison, subsequently impeding the choice of the XA
method. Therefore. in this work. we introduce XA evaluation in the cimate context and dincuss different desired explana)
tion peopertics. mamely, robustncss, faithfulocss. randomsization, complexity, 3ad localizatcn. To this end, we chose prevy

o work a8 case study where the decade of dicted. After training

perceptron (MLP) and a convolutional neural ..u-«\ (CNN). multiple XAT methods are applied and their skill scores i
reference 10 & random uniform explanation are calculated for each propenty. Iadependent of the network, we find thal
XAI methods such a Integrated Graduents, layerwise relevance propagation, and input times gradsents exbabit coanider|
able robastness, (athfulness. and complexity while sacrificing randoasization performance. Seasitivity methods. gradient]
SmoothGirad, NoieGrad, and FasonGrad, match the robustacss skill bet sacrifice faithfulses and cosplexity for the fan
domization skill. We find architecture dependent performance diferences regarding robustness, comglexity, and localiza)
tion skills of different XAI methods, bighlighting the necessity for rescarch task-specific evaluation. Overall, our wor

affers an overview of dilferent evahuation properties in the clmate scicooc coatent and shows how 1o compare and beach
mark differcat explanation methods, asessing their suitabity hased om streagths snd weaknesses, for the speific researct]
problem at hand, By that, we aim (0 support chimate rescaschers in the sclection of a suitable XAl method.

SIGNIFICANCE i L

€ (XAI) helps 10 understand the reasoning bebind

physical processcs. Homever. lkmﬂw-;—lhud’(l\lmahﬁmmhmn-n
aplasation

CAMBRIDGE

UNIVERSITY PRESS

METHODS PAPER ) ©

Neural network attribution methods for problems in
geoscience: A novel synthetic benchmark dataset

Antonios Mamalakis'* @, Imme Ebert-Uphoff = @ and Elizabeth A. Bames'

' Dipartmcnt of Atmospherse Scienc, Colorado State Univensty, Fort Collins, Colorado, USA

"Department of Flectrical and Computcr Engincering. Colcendo St University, Fort Cellin, Coloendo, USA

*Cooperative Institute for Research i the Atmosphere, C oun.h Sute Universty, Fort Collins, Colorado, USA
*Ceeresgoading suthor. E-mad amamalh i ram colodats

Reecived: 29 November 2021, Revised: 05 Apeil 2022; Accepted: 28 Ageil 2022

Keywords: smnbunion benchmark, eXplainable Aruficial Intellsgence. gomesences. ground truth; neural networks; regresscen
peobloms

Abstract

Despite the increasingly successful application of ncural mctworks to many problems in the geoscionces, their
complex and nonlincar structre makes the imterpretation of their predictions difficult, which limits model tast and
does not allow scientists 10 gain physical insights about the problem at hand. Many different methods have been
introduced in the cmerging ficld of eXplainable Artificial Intelligence (XAT), which aims at attributing the network's
prediction 10 specific features in the input domain. XA methods are usually assessed by using benchmark datasets
(such as MNIST or ImageNet for image However, an ob; derived grownd truth for
the attribution & kacking for most of these datasets, making the assessment of XAl in many cascs subjective. Also,
benchmark datasct: designed for p rare. Here, we a framework, based
on the use of additively separable functions, to generate altrbution benchmark datascts for regression peoblonss for
which the ground tnuth of the attribution & known a priori. We generate a large benchmark datasct and train a fully
connected network 10 leam the underlying function that was used for simulation. We then compare estimased
heatmaps from different XAI methods to the ground truth madam uk!llly examples where specific XAl methods

ISSUES  EARLY ONLINE RELEASE COLLECTIONS

Evaluation, Tuning and Interpretation of Neural Networks for
Working with Images in Meteorological Applications &

e Fher et e e

Wk A M, S 145,

Metpxiiolor/ 10,1175/ BAMS-0-20 0077,

Capsule:

This aticle discasses stratgics for the development of neural networks (ska deep
learning) for meseocological applications. Topics include evalatice, taming and
interpeetation of neural networks for woeking with metcorological images.

Abstract

The method of eural nctworks (aka decp beaming) has opened up many new
opparsunitis to utilize remotely g in
include image classification, ¢.g., to determine whetber an ismage contains a tropical

Common

cyclone, and image-to-image translation, ¢.g. to emulate radar imagery for satellites
that anly have passive chasscls. However, there arc yet many open questions regarding
the wse of neural networks for working with mescorological images, such as best
practices for evabuation, tuning and isscrpretation. This article highlights scveral

strateygics foe newral network that have ot yet
received much atiention i the . such s the concept of
receptive fickds, for

ncural network interpectation, such as synihetic experiments and layer-wise relevance
propagation. We also comsader the process of newral network interpectation as @ whale,

a5 an iterative dri that beilds on

perform well or pooely. We beficve that attribution bench arc of great
for furtber application of neural networks in the geosciences, -4 for more objective assessment and accurate
implementation of XAl methods, which will increase model trust and assist in discovering new scicnce.

maleading wmv-

awess the performance of explasation desirable propertics. We demonstrate that XAT evalaa-

mm-um-ﬂ-ﬂwdmxuuum«.mm rewcarchers with
anahze.

design and hypothesis generation and testing. Fisally, while most work o
neural network inforpectation in mescorology has so far focused on netwarks for image
classification txsks, we expand the focus 10 also include networks for image-to-image
translatica
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XAl Attribution
Methods

Attribution heatmaps are largely
consistent with how many climate
scientists pose questions

Prediction

of 1 sample




XAl Attribution
Methods

Attribution heatmaps are largely
consistent with how many climate
scientists pose questions

Prediction

of 1 sample

Attribution

of 1 sample

. forward pass
input output

;o\

output

%‘ o

e.g. Montavon et al. (2017), Pattern Recognition; Montavon et al. (2018), Digital Signal Processing




Reasons to care about XAl

A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAl.

EXPLAINABLE
ARTIFICIAL INTELLIGENCE

XAl




Reasons to care about XAl

A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAl.
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Reasons to care about XAl

A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAl.
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Reasons to care about XAl

A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAl.
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Reasons to care about XAl

A scientist’s ultimate goal is typically to understand “why?”, but even if you don’t care “why?” you should still care about XAl.

FINE TUNE
GAVGE TRUST ond.

| OPTIMIZE
">
¥

| s
= EXPLAINABLE Cf:_,o‘\"_}'
ARTIFICIAL INTELLGENCE ) & (]

XAl

\ /
\ ~  Ourultimate goal is to understand

LEARN -~ causality. XAl does not give us this.
NEW SCIENCE py \ Butitis astep in the right direction.
A



. TIME OCTOBER 30, 2023
L]
ik Schamer Wt AT e Handor e () == Executive Order on the Safe, Secure,

Sounds

s B and Trustworthy Development and
Use of Artificial Intelligence

Sec. 8. Protecting Consumers, Patients, Passengers, and Students. (a)
Independent regulatory agencies are encouraged, as they deem appropriate,

to consider using their full range of authorities to protect American

W’hy businesses need exp]ainable J.NE=  consumers from fraud, discrimination, and threats to privacy and to address
and how to deliver it other risks that may arise from the use of Al including risks to financial

stability, and to consider rulemaking, as well as emphasizing or clarifying

where existing regulations and guidance apply to Al including clarifying the
H.R.6093 - Weather Act Reauthorization Act of 2023 responsibility of regulated entities to conduct due diligence on and monitor

118th Congress (2023-2024) | Get alerts any third-party Al services they use, and emphasizing or clarifying

“(c) ArtiFicIAL INTELLIGENCE INVESTMENTS.—The Under Secretary shall leverage artificial intelligence
and hine learning technologies to , optimize, and further leverage advanced computing to accomplish T = 2 2
critical missions of the National Oceanic and Atmospheric Administration by enhancing existing and forthcoming I‘L‘glll&t(‘d entities’ ahlllt)’ to explain their use of AT models.
high-performance and cloud computing infrastructure or systems.

requirements and expectations related to the [FEIEISGAD PN BT & EENT

£ niTs

“(d) CEntERs OF ExceLLENCE.—The Under Secretary may expand, and where applicable establish, centers

of excellence to aid the adoption of next-generation artificial intelligence and machine learning enabled advanced The EU AlA mandates that hlgh—HSk Al SYStemS
computing capabilities. Each such center may carry out activities that include the following: must provide C'ear and Comprehensible
information about their capabilities and

S
limitations, and that their decision-making A~
2K

rocess should be transparent and traceable.
4 = ¥ x W

Explainable Al (XAl) will be essential.
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wwe Base-CNN Initialized with 2023 Observations
Transfer-CNN Initialized with 2023 Observations
CMIP6 Projections
(O Transfer-Learning Thresholds
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Regional transfer learning provides new insights
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= Smoothed Berkeley Observations
GIC e Base-CNN Initialized with 2023 Observations
NWN NEN 4 b Transfer-CNN Initialized with 2023 Observations
CMIP6 Projections
(O Transfer-Learning Thresholds

_

2080 2100

Regional transfer learning provides new insights

@ &; Barnes, Diffenbaugh & Seneviratne (2024)
X



forced
response

1900 1925 1950 1975 2000 2025 2050 2075 2100

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5
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Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



1900 1925 1950 1975 2000 2025 2050 2075 2100

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



Al to leverage imperfect climate
models to better constrain future

projections by fusing simulations and
observations.

1900 1925 1950 1975 2000

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5

2025

2050

2075

2100



Al to explore earth system predictability
weeks-to-years in advance.

Prepare for weather + climate hazards
Anticipate the masking of the intended effects of climate policies 2020-2050
|

LA

multi-year predictability

1900 1925 1950 1975 2000 2025 2050 2075 2100

Surface temperature over Chicago, IL
MPI-ESM Large Ensemble; historical + RCP8.5



past sea-surface future sea surface
temperatures temperatures”

for one grid point
[0-5 years]

warm

\

neutral

cool

r'd

*can predict a range of variables

0-1 years before

Predict ocean temperatures 5 years later

e 9 Davenport, Barnes & Gordon (2024)



CLIMATE MODEL DATA

Overall Accuracy

0.4 0.6 0.8 1.0

Trained on climate model MPI-ESM-1-2-LR [3,630 years of datal
Evaluated on climate model MPI-ESM-1-2-LR

Focusing on when the Al is most confident leads to skillful predictions

e 9 Davenport, Barnes & Gordon (2024)



CLIMATE MODEL DATA

Overall Accuracy Accuracy for 40% most
confident predictions

0.4 0.6 0.8 1.0

Trained on climate model MPI-ESM-1-2-LR [3,630 years of datal
Evaluated on climate model MPI-ESM-1-2-LR

Focusing on when the Al is most confident leads to skillful predictions

e 9 Davenport, Barnes & Gordon (2024)



CLIMATE MODEL DATA

Overall Accuracy Accuracy for 40% most Accuracy for 20% most
confident predictions confident predictions

0.4 0.6 0.8 1.0 >60-80% accuracy!

Trained on climate model MPI-ESM-1-2-LR [3,630 years of datal
Evaluated on climate model MPI-ESM-1-2-LR

Focusing on when the Al is most confident leads to skillful predictions

e 9 Davenport, Barnes & Gordon (2024)



OBSERVATIONS

Overall Accuracy Accuracy for 40% most Accuracy for 20% most
confident predictions confident predictions

0.4 0.6 0.8 1.0

Trained on climate model MPI-ESM-1-2-LR [3,630 years of datal
Evaluated on observations [ERSSTv5; 169 years of datal

Leveraging climate model data provides skillful predictions of the real world

6 9 Davenport, Barnes & Gordon (2024)



Windows of Opportunity tested on ERSSTv5 observations
Accuracy of 20% most confident predictions of year 1-5 sea surface temperature anomaly

c) CNN trained on CNRM-CM6-1

= - -

oSN

i) CNN trained on NorCPM1

7 A A

==

0.4 0.6 0.8 1.0
prediction accuracy prediction accuracy prediction accuracy

Compare climate model-based network skill

___________ T
1

e 9 Davenport, Barnes & Gordon (2024)



Windows of Opportunity tested on ERSSTv5 observations KyS. OcesH
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e 9 Davenport, Barnes & Gordon (2024)

Compare climate model-based network skill



Predicting 5-year average surface temperature at each grid point
Applied to 1200 years of CESM2 control simulation

Hidden Layer  Output Layer
{32 nodes) (2 nodes)

Prediction of average
land surface
temperature anomaly
over the next 5 years

@O @O, o
OO @00 XA
OO OO0

XAl reveals sources of predictability that vary in time and space

@ g Toms, Barnes & Hurrell (2021)



Prediction of average
land surface
temperature anomaly
over the next 5 years

California O _________ Q _________ O \O :© ;.< XAI
) OO~ TT0T0

Canada

XAl reveals sources of predictability that vary in time and space

© 3L



Hidden Layer  Output Layer
{32 nodes) (2 nodes)

Prediction of average
land surface
temperature anomaly
over the next 5 years

.................. D -~ -
Q ‘, 4, output |

OO 0@ =00~ XA|

42% of samples 34% of samples

00 or=0r=0

24% of samples

XAl reveals sources of predictability that vary in time and space
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PERSPECTIVE nawre, ‘
machine intelligence

Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®

Test image Evidence for animal being a Siberian husky

Evidence for animal being a transverse fiute

Rudin (2019)

Interpretable Al

Explainable Al tells us where, but not how.

Interpretable Al explicitly incorporates the decision-making process into its structure.
Models are interpretable by design.



Our Current Goal:

work toward building Al models that mimic
scientific human reasoning to improve
intrinsic interpretability

Interpretable Al

Explainable Al tells us where, but not how.
Interpretable Al explicitly incorporates the decision-making process into its structure.

Models are interpretable by design.
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Climate Model
Atmospheric Predictability as Revealed by Naturally-Gecusring Analogues

Epwarp N. LoRENZ

Dept. of M logy, M. h Institute of Technology, Cambridge, Mass.*
(Manuscript received 2 April 1969)

ABSTRACT

Two states of the atmosphere which are observed to resemble one another are termed analogues. Either
state of a pair of analogues may be regarded as equal to the other state plus a small superposed ‘“‘error.”
From the behavior of the atmosphere following each state, the growth rate of the error may be determined.

Five years of twice-daily height values of the 200-, 500-, and 850-mb surfaces at a grid of 1003 points
over the Northern Hemisphere are procured. A weighted root-mean-square height difference is used as a
measure of the difference between two states, or the error. For each pair of states occurring within one
month of the same time of year, but in different years, the error is computed.

There are numerous mediocre analogues but no truly good ones. The smallest errors have an average
doubling time of about 8 days. Larger errors grow less rapidly. Extrapolation with the aid of a quadratic
hypothesis indicates that truly small errors would double in about 2.5 days. These rates may be compared
with a §-day doubling time previously deduced from dynamical considerations.

The possibility that the computed growth rate is spurious, and results only from having superposed
the smaller errors on those particular states where errors grow most rapidly, is considered and rejected. The
likelihood of encountering any truly good analogues by processing all existing upper-level data appears
to be small.

Barnes et al. (2022

Method of Analogs Y PRSI

Fernandez and Barnes (in prep



@ potential E-W"& potential =& potential
{ analog .= F-% analog -~ F% analog
time
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Analogs for seasonal-to-decadal prediction



Analogs for seasonal-to-decadal prediction



time

(years)

Analogs for seasonal-to-decadal prediction



Use: To Predict:
SST in Year 0-4 North Atlantic SST in Year 5-9

= - . R ~ , i R N
"y - s b
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* a perfect model application using the MPI Grand Ensemble

Analog Forecasts for North Atlantic Sea Surface Temperature




Traditionally, if two states “look similar” it means they have the
smallest difference over the entire globe, or a predefined region.

potential
analog

difference

This assumes that every region is equally important for determining how the
climate system will evolve. We can do better.
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Use Al to learn regions most relevant for a “good analog”

o



Take this mask and use it to determine the “best analogs” in
the standard, non-Al, way.

Use Al to learn regions most relevant for a “good analog”

o



Weighted Mask

Use Al to learn regions most relevant for a “good analog”

=
N
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T
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w

-10

mask weight



b Sample 223 C Best Analog

nomaly (standardized)

Identify the analogs with the weighted mask




b Sample 223 C Best Analog

nomaly (standardized)

Some regions look
similar

Identify the analogs with the weighted mask




U

Sample 223 C Best Analog

nomaly (standardized)

Some regions look
different

Identify the analogs with the weighted mask




Sample 223

Best Analog

sea surface temperature anomaly (standardized)

Identify the analogs




CLIMATE MODEL RESULTS

SST anomaly
(standardized)

-4 A mmmm Top 10 Analogs Mean Prediction s Truth Top 10 Analogs Individual Predictions

40 80 120
year

Forecasts are skillful

160

‘ Rader and Barnes (2024)



OBSERVATIONS

N

” ® weighted analogs
—&— CFSv2
-4 - ® obs
1950 1960 1970 1980 1990 2000 2010
year

standardized temperature anomaly
in the North Atlantic

These optimized analogs rival the skill of dynamical models

’ Rader and Barnes (2024)



This approach is
interpretable Al!

While one could train a massive black-box
Al model to make these predictions, the
benefit of analogs is that they are easily
understood.

Al is merely used to learn the optimal
mask for choosing the analogs. The masks
are the “XAl".

Mask Weights




* now we choose analogs from the expansive CMIPé ensemble
CMIP6 Models
Analog Prediction §l | IAAMNNAYS
Observations
/ (W
initialization v Top Analogs

time

Analogs can help constrain projections — initialized predictions

@ Fernandez and Barnes (in prep)



Yrs 5-7 Surface Temperature Anomalies

Western U.S.
3 = 5
CMIP6 range
2 -
1 = B
alog

0+ range

_1 -
1950 1960 1970 1980 1990 2000 2010 2020 2030

prediction year

Analogs can help constrain projections — initialized predictions

e Fernandez and Barnes (in prep)



Yrs 5-7 Surface Temperature Anomalies
Western U.S.

20251
2000t

1975 ¢

Hh i

analog year
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©
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Emergence of the forced response CMIP6 range
that is relevant for prediction \
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1900 1950 2000 (1980 1990 2000 2010 2020 2030
prediction year prediction year

Analogs can help constrain projections — initialized predictions

e Fernandez and Barnes (in prep)



Climate change influence the
performance of Al models

Previous climate New climate

More hot
weather

Lesscold

Extreme hot ..,
weather

weather

“wrce: US EPA ap”

Generative Al for downscaling,
ensembling, data assimilation...

Digital Twin

Image: NVIDIA

Al for weather & climate
model replacement

These are exciting times! XAl will be key to advancing science.



Thank you.

eabarnes@colostate.edu
https://barnes.atmos.colostate.edu
github: eabarnes1010



