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Motivations
• Cloud feedback depends not just on global mean surface temperature, 

but also on tropospheric stability (estimated inversion strength, EIS), 
which itself governed by the evolving spatial patterns of surface warming. 

• Quantifying the strength of pattern effect is a crucial step to constrain the 
cloud feedback (and climate sensitivity) using historical record
• Understanding how EIS responds to warming is thus critical

à Pattern Effect
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*dT = global average near-surface air temperature

Objectives:
Machine learning approach 
(1) to relate surface warming pattern to EIS changes
(2) to gain insights into the reliability of reanalysis-derived EIS
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Machine learning (ML) with leave-one-out approach

• 9 CMIP6 models that have at least 10 ensemble members
• Training period: 1979 – 2022 (historical + SSP3-7.0 simulations)
• Predictor: annual anomaly of global surface temperature pattern
• Predictand: annual anomaly of tropical-averaged EIS values
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Results (3)

Cloud feedback pattern effect:
0.01 (MERRA2) to 1.57 (MERRA) W/m2/K
Based on ML results à
0.55 (ERA-Interim) to 0.95 (CFSR) W/m2/K
(implied percentage change = −74%)



Summary

• Observationally “constrained” estimates of the low-cloud feedback pattern effect 
over 1980-2014 vary widely (from roughly 0 to 1.6 W/m2/K) primarily because 
reanalyses strongly disagree on recent EIS trends.

• We train a statistical learning algorithm on a suite of diverse GCMs to learn how EIS 
anomalies relate to surface temperature patterns, then apply it to observed surface 
warming patterns to estimate observationally-constrained dEIS/dT values.

• Our approach predicts dEIS/dT over 1980-2014 to range from 0.25 to 0.53 K/K, 
roughly 1/3 of the raw spread across reanalyses.

• This implies a much tighter observational constraint on the low-cloud feedback 
pattern effect of 0.55 to 0.95 W/m2/K, and of the total pattern effect of about 1.6 
to 2 W/m2/K for this period [using values from Myers et al (2023)]

• Caveats: The credibility of our results depends on GCMs realistically simulating the 
relationship between EIS and surface temperature patterns and on the accuracy of 
the ML approach to learn it. It also depends on the reliability of the surface 
temperature patterns derived from observational datasets.
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