Representation of balanced state in models of geophysical flows

Joint CLIVAR Ocean Model Development Panel and COMMODORE Workshop NCAR, Boulder September 9th, 2024

- Manita Chouksey
- Leibniz-Institut für Ostseeforschung Warnemünde
- Collaborators: Carsten Eden, Dirk Olbers, Silvano Rosenau, Marcel Oliver

February 12, 1947 : Jule Charney, in a letter to Philip Thompson:

frequency internal gravity waves.

amplitude of the high frequency components is small.

- We might say that the atmosphere is a musical instrument on which one can play many tunes. And nature is a musician more of the Beethoven than of the Chopin type.
- Low notes refer to the slow rotational motions whereas high notes to the high
- The bulk of the energy is contained in the slow rotational motions and the

Energy pathways- what's missing?

Energy pathways- what's missing?

Adapted from Eden et al. 2014

Energy pathways- what's missing?

Adapted from Eden et al. 2014

Year	Author(s)	Title
1986	Lorenz, E. N.	On the Existen
1987	Lorenz, E. N. and Krishna- murthy, V.	On the Nonexis
1991	Jacobs, S. J.	Existence of a S System of Equa
1992	Lorenz, E. N.	The Slow Mani
1994	Boyd, John P.	The Slow Ma Model.
1996	Fowler, A. C. and Kember, G.	The Lorenz-Kr fold.
1996	Camassa, R. and Tin, Siu-Kei	The Global Geo fold in the Lore

Slow manifold: To be or not to be?

Volume, Pages

ce of a Slow Manifold. **43**, 1547–1558. stence of a Slow Manifold. **44**, 2940–2950.

48, 893–902. Slow Manifold in a Model ations. **49**, 2449–2451. ifold — What Is It? **51**, 1057–1064. anifold of a Five-Mode

rishnamurthy Slow Mani-**53**, 1433–1437.

cometry of the Slow Mani-**53**, 3251–3264. enz-Krishnamurthy Model.

From Lynch 2000

Diagnosing waves in atmosphere and ocean

»Are these true wave signals or 'apparent wave signals' (slaved modes)?

Horz. velocity divergence and geopotential (lower) at 130 mb (upper troposphere) in idealized simulation

Vertical velocity in a model of baroclinic instability

from O'Sullivan and Dunkerton ('95)

From Chouksey et. al ('18)

High-pass filtered w and pressure (contours) in the Gulf Stream

from von Storch, Badin, and Oliver ('19)

Determination of Balance

Full state

 $\partial_t \hat{z} - i \mathbf{A} \cdot \hat{z} = Ro \, \hat{n}$ Nonlinear Linear

» **Optimal Balance** » Higher Order Balance »Masur and Oliver 2020 (JPO) »Chouksey et al. 2022 (JPO) »Eden et al. 2019 (JPO)

- » Two timescales: slow and fast
- » Expansion in Rossby number
- » up to 4th order

- » Iterative forward-backward
- integration
- » optimal solution of the balanced state

Balanced eddies

Unbalanced waves

Determination of Balance

Full state

 $\partial_t \hat{z} - i \mathbf{A} \cdot \hat{z} = Ro \, \hat{n}$ Nonlinear Linear

» **Optimal Balance** » Higher Order Balance »Masur and Oliver 2020 (JPO) »Chouksey et al. 2022 (JPO) »Eden et al. 2019 (JPO)

- » Two timescales: slow and fast
- » Expansion in Rossby number
- » up to 4th order

- » Iterative forward-backward
- integration
- » optimal solution of the balanced state

Balanced eddies

Unbalanced waves

- » Implementation in different
 - » Models
 - » Codes
 - » Configurations
 - » **Discretizations**
 - » Methods
 - » **Regimes**

Determination of Balance

Full state

 $\partial_t \hat{z} - i \mathbf{A} \cdot \hat{z} = Ro \, \hat{n}$ Nonlinear Linear

» Higher Order Balance »Chouksey et al. 2022 (JPO) »Eden et al. 2019 (JPO)

- » Two timescales: slow and fast
- » Expansion in Rossby number
- » up to 4th order

- » Iterative forward-backward
- integration
- » optimal solution of the balanced state

Balanced eddies

Unbalanced waves

» **Optimal Balance** »Masur and Oliver 2020 (JPO)

- » **Optimal Balance** with Time Averaging »Rosenau 2023 N E W !!
- » Higher accuracy, no Fourier transform
- » Realistic flows: boundaries, **B-plane**

Nonlinear modal decomposition

Non-linear normal mode initialization (NNMI) Machenhauer (1977), Baer and Tribbia (1977), Warn et. al (1995)

Single layer model $\partial_t \boldsymbol{u} + \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{h} = -\boldsymbol{F}$ (scaled):

Fourier space:

Balanced mode

from C-grid	Eigenvalues:	$\omega^0 = 0$
discrete	Eigenvectors:	$oldsymbol{q}^0$, $oldsymbol{p}^0$,
operators	Projection:	mode amp

Ro
$$\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}$$
 $\partial_t h + c^2 \boldsymbol{\nabla} \cdot \boldsymbol{u} = -\operatorname{Ro} \, \boldsymbol{\nabla} \cdot h \boldsymbol{u}$
vector $\hat{\boldsymbol{z}}(\boldsymbol{k}) = (\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}, \hat{h})^T$
 $\boldsymbol{A} = \begin{pmatrix} 0 & -i & -k_x \\ i & 0 & -k_y \\ -c^2 k_x & -c^2 k_y & 0 \end{pmatrix}$

Unbalanced mode $\omega^{\pm} = \pm \sqrt{1 + c^2 k^2}$ q^{\pm}, p^{\pm}

plitude $g^s = p^s \cdot \hat{z}$ with $s = 0, \pm$

Higher order decomposition

» Modal representation: $\partial_t g^s - i\omega^s g$ $(Ro \partial_T + \partial_{t*})g^s - i\omega^s g^s$

- » Weak interaction assumption: weakly g
- » expansion in Ro as e.g. in Warn (1996)
- » introduce fast and slow time scale with

» SLOW MODE s=0

 $\partial_T g^0 = -i l^s(g^0, 0)$ $\partial_{\tau}g^{0} = -il^{s}(g^{0}, f_{1}^{\pm}) + il^{s}(0, f_{1}^{\pm})$ $\partial_T g^0 = -il^s(g^0, f_2^{\pm}) + il^s(0, f_2^{\pm}) - il^0(0, f_1^{\pm})$

» Machenhauer(1977) » **QG** balanced state

» suppress any wave generation by $\partial_{t^*} f_n^{\pm} = 0 \rightarrow$ 'slaved' modes f_n $f_1^{\pm} = I^{\pm}(g^0, 0) / \omega^{\pm} \ , \ f_2^{\pm} = \left(K^{\pm}(g^0, f_1^{\pm}) - i \partial_T f_1^{\pm} \right) / \omega^{\pm} \ , \ ...$ » first order slaved mode

$$g^{s} = Ro p^{s} \cdot \hat{n} = -iRo I^{s}(g^{0}, g^{\pm})$$

$$f^{s} = -iRo \left(I^{s}(g^{0}, 0) + I^{s}(0, g^{\pm}) + K^{s}(g^{0}, g^{\pm})\right)$$

$$rowing waves \quad g^{\pm} = Ro f_{1}^{\pm} + Ro^{2} f_{2}^{\pm} + \dots$$

$$h T = Ro t^{*} \text{ and } \partial_{t} = Ro \partial_{T} + \partial_{t}^{*}$$

» slow mode g^0 varies on T only, while fast mode g^{\pm} has two time scales t* and T

for increasing order in Ro:

» FAST MODE s=±

$$\partial_{t^*} f_1^{\pm} - i\omega^{\pm} f_1^{\pm} = -il^{\pm}(g^0, 0)$$

 $\partial_T f_1^{\pm} + \partial_{t^*} f_2^{\pm} - i\omega^{\pm} f_2^{\pm} = -iK^{\pm}(g^0, f_1^{\pm})$
 $\partial_T f_2^{\pm} + \partial_{t^*} f_3^{\pm} - i\omega^{\pm} f_3^{\pm} = -il^{\pm}(0, f_1^{\pm}) - iK^{\pm}(g^0, f_1^{\pm})$

Wave generation at higher orders

Ist ORDER

» SPONTANEOUS EMISSION
 » Waves only at higher orders
 » Dominated by slaved modes

» SYMMETRIC INSTABILITIES
 » Waves already at lower orders
 » More prominent

Diagnosed imbalance: higher orders

Diagnosed imbalance

$$I(u) = \frac{\|u' - u''\|}{\frac{1}{2} (\|u'\| + \|u''\|)} \quad \text{evolved state } u' \text{ rebalanced state } u' \text{ re$$

- The quality of preservation of balance $\rangle\rangle$ might depend on the numerical scheme (e.g. Mohebalhojeh & Dritschel 2000).
- Here, we show that adapting the notion of **>>** balance when changing between the finite difference and the spectral scheme yields comparably very good preservation of balance.
- Mixing notions of balance across $\rangle\rangle$ numerical schemes—> quality of preservation of balance drops.

Preservation of Balance

Diagnosed imbalance: Cross-balancing

Nearly invariant slow manifold

- Very small diagnosed imbalance $\rangle\rangle$
 - negligible wave emission **>>**
 - nearly invariant slow manifold \rightarrow

$$I(u) = \frac{\|u' - u''\|}{\frac{1}{2} \left(\|u'\| + \|u''\|\right)}$$

evolved state u'rebalanced state u''norm (rms) ||..||

Wave generation at boundaries

Decomposition in more realistic cases:

- Modification of Optimal Balance —> OBTA $\rangle\rangle$
- \rightarrow

⇒ Convergence to exact solution!

Optimal Balance with Time Averaging

Replace spectral decomposition with the new time averaging procedure

New model: FRIDOM

Framework for Idealized Ocean Models

FRIDON	1	
Q Search *+	к	
Contents:		
Installation		
Getting Started		
Gallery	~	
Creating Own Custom Models		
Fridom API	~	

Implications for:

- Python + JAX => Fast! Runs on GPUs. **>>**
- \rightarrow without touching the source code.
- \rightarrow
- User friendly => Easy to install and run! \rightarrow
- Documentation at https://fridom.readthedocs.io/en/latest/ $\rangle\rangle$

Modular => New diagnostic modules, even parameterizations, can be appended to existing model

Highly generalized => Modules for one model can be used for a different one without changes.

Courtesy: Silvano Rosenau

Teaser: Machine learning for SWOT

- » Rigorously Trained neural network from nonlinear flow decomposition
- » Application to ocean observations, e.g. SWOT
- » 2D snapshots
- » Ro (I) regime: no scale separation
- » First results from shallow water model

And the second and the second Courtesy: Nils Brüggemann (high-resolution ICON-O simulations)

ser: M

- 1.0

0.5

0.0

- » Generative ad ork
 - » generat
 - » discri**min**

- - ---> Normalize

Full u

ng for S

» Results from shallow water model » **1500 samples: snapsho**ts from initially balanced random field

» Training NN for h, u and v for 50 iterations » Evaluating the trained NN on a new unknown sample » Denormalized outputs

ser: M

- 1.0

0.5

0.0

- -1.0

- » Generative ad ork
 - » generat
 - » discri**min**

- - —> Normalize 👥

Full u

ng for S

» Results from shallow water model » **1500 samples: snapsho**ts from initially balanced random field

» Training NN for h, u and v for 50 iterations » Evaluating the trained NN on a new unknown sample » Denormalized outputs

- Balance **>>**
 - Nonlinear flow decomposition $\rangle\rangle$
 - Higher order and Optimal balance $\rangle\rangle$
 - can be considered equivalent for practical purposes $\rangle\rangle$
 - nearly invariant balanced state \rightarrow
- Imbalance $\rangle\rangle$
 - Slaved modes dominate the wave signal $\rangle\rangle$
 - Spontaneous emission—WEAK $\rangle\rangle$
 - Symmetric instabilities \rightarrow
- New insights into the representation of balance in $\rangle\rangle$ geophysical flows
 - Implications for eddy and wave parameterizations $\rangle\rangle$

Summary

Ongoing: $\rangle\rangle$ Balance at boundaries \rightarrow

Balance at equator $\rangle\rangle$

» Revisit balance representation and eddy dissipation!

- Balance **>>**
 - Nonlinear flow decomposition $\rangle\rangle$
 - Higher order and Optimal balance $\rangle\rangle$
 - can be considered equivalent for practical purposes \rightarrow
 - nearly invariant balanced state \rightarrow
- Imbalance \rightarrow
 - Slaved modes dominate the wave signal $\rangle\rangle$
 - Spontaneous emission—WEAK $\rangle\rangle$
 - Symmetric instabilities \rightarrow
- New insights into the representation of balance in $\rangle\rangle$ geophysical flows
 - Implications for eddy and wave parameterizations \rightarrow

Summary

Ongoing: $\rangle\rangle$ Balance at boundaries \rightarrow

Balance at equator $\rangle\rangle$