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Assessment of model realism needed for 
credible predictions and projections, and for 
informing understanding of observed trends.  
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• Is the model range plausible?
• How should we evaluate models given a single observed outcome? 
• Could another reality have been possible? 

Ø New approaches and continued challenges.



Requires assessing both the model’s 
forced response and its internal variability. 

Is the model range plausible?



Requires assessing both the model’s 
forced response and its internal variability. 

Is the model range plausible?

• Model’s forced response: average across all members of a 
“Single Model Initial-Condition Large Ensemble” (SMILE).

• Model’s internal variability: residual from the forced response 
in each member.  



Requires assessing both the model’s 
forced response and its internal variability. 

Is the model range plausible?

• Model’s forced response: average across all members of a 
“Single Model Initial-Condition Large Ensemble” (SMILE).

• Model’s internal variability: residual from the forced response 
in each member.  

• Observed forced response: statistical & dynamical methods.  
       



Requires assessing both the model’s 
forced response and its internal variability. 

Is the model range plausible?

• Model’s forced response: average across all members of a 
“Single Model Initial-Condition Large Ensemble” (SMILE).

• Model’s internal variability: residual from the forced response 
in each member.  

• Observed forced response: statistical & dynamical methods.  
       ForceSMIP workshop & hackathon (Aug 2023, NCAR and ETH). 

Extensive comparison of existing methods and development of 
new ones, using SMILEs as a testbed;  double-blind test of the 
methods, with application to observations.  
(See Robb Wills’ poster on Friday.)



Requires assessing both the model’s 
forced response and its internal variability. 

Is the model range plausible?

• Model’s forced response: average across all members of a 
“Single Model Initial-Condition Large Ensemble” (SMILE).

• Model’s internal variability: residual from the forced response 
in each member.  

• Observed internal variability: residual from forced response. 
Limited to one realization: we don’t know where the observed 
trend lies in the distribution of possible realities.  

• Observed forced response: statistical & dynamical methods.  
       ForceSMIP workshop & hackathon (Aug 2023, NCAR and ETH). 
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Ø Determine whether the observed trend lies within the 
spread of a given SMILE. However, this could be for the 
“wrong reason”: e.g., spread due to internal variability 
might be too large.  Relatedly, the forced response and 
associated signal-to-noise ratio might be too low.  
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spread of a given SMILE. However, this could be for the 
“wrong reason”: e.g., spread due to internal variability 
might be too large.  Relatedly, the forced response and 
associated signal-to-noise ratio might be too low.  

How should we evaluate model trends 
given a single observed outcome?

Ø How do we evaluate ensemble spread in a SMILE? 
Need to construct plausible alternative outcomes for 
observed trends.
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(“Observational” Large Ensembles) 



• Infer statistical characteristics of trends of any length from 
the amplitude and autocorrelation properties of 
interannual variability (Thompson et al. 2015).  Works well, 
but does not provide information on spatial patterns.

Constructing plausible alternative realities 
(“Observational” Large Ensembles) 



• Infer statistical characteristics of trends of any length from 
the amplitude and autocorrelation properties of 
interannual variability (Thompson et al. 2015).  Works well, 
but does not provide information on spatial patterns.

Constructing plausible alternative realities 
(“Observational” Large Ensembles) 

• Statistical regression onto leading modes of variability 
(ENSO, PDV, AMV) with shuffled phases plus block 
bootstrapping of the residuals (McKinnon et al.).  Preliminary 
step requires removal of the estimated forced response       
(in this case, via regression onto a SMILE’s forced GMST(t)).
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• Infer statistical characteristics of trends of any length from 
the amplitude and autocorrelation properties of 
interannual variability (Thompson et al. 2015).  Works well, 
but does not provide information on spatial patterns.

Constructing plausible alternative realities 
(“Observational” Large Ensembles) 

• Dynamical Linear Inverse Modeling (LIM) of global SSTs 
(Newman et al.).   Yields estimated forced response (gravest 
modes) and internal variability.

• Statistical regression onto leading modes of variability 
(ENSO, PDV, AMV) with shuffled phases plus block 
bootstrapping of the residuals (McKinnon et al.).  Preliminary 
step requires removal of the estimated forced response       
(in this case, via regression onto a SMILE’s forced GMST(t)).



Observed SST (ERSSTv5) Trends (1980-2017)

Alternate Realities: Dynamical Approach (LIM)

Two LIM realizations

Courtesy of Matt Newman 
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Winter Precipitation Trends (1962-2021)

L H

Circulation-induced 
component removed

Internal SLP trends 
are driving most of 

the spread in 
precipitation trends.

Contours: SLP trends (ci = 0.25 hPa per 10yrs)

Remove an empirical estimate of the dynamically-induced 
component to obtain the forced component (thermodynamic) as a 
residual.  “Dynamical Adjustment” procedure based on constructed 
circulation analogs using observed interannual SLP and 
precipitation relationships (Deser et al. 2018; Wallace et al. 2012). 

Can we use this fact 
to estimate the 

forced component 
of observed 

precipitation trends?
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Alternate Realities: The role of the atmospheric circulation

Winter Precipitation Trends (1962-2021)

Now add OLENS 
internal trend

Model 

Observations

L H

L

H

Is the observed SLP 
trend unforced?

Deser and Phillips (2023)



Additional Challenges and Implications
• The presence of forced trends may corrupt our    

empirical definitions of modes of internal variability    
(e.g., AMV, PDV, ENSO …).  

• The limited length of the instrumental record restricts  
our knowledge of the true range of internal variability. 

• SST trends may modulate impacts from the 2023/24        
El Nino. 

• A cautionary note on comparing CMIP5 & CMIP6 models.
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Precipitation 
Probability Forecast
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An automated analysis tool and data 
repository for exploring forced and 

internal components of climate 
variability and change.

https://www.cesm.ucar.edu/projects/cvdp-le



• How does climate change affect internal variability?

• What are the relative contributions of internal variability 
and forced climate change to long-term trends?

• How well does a given model simulate the mean state, 
long-term trends, and modes of variability such as 
ENSO, NAO, AMV, PDV? 

• How do models compare with each other?                    
Are there true structural differences?

https://www.cesm.ucar.edu/projects/cvdp-le



• How does climate change affect internal variability?

• What are the relative contributions of internal variability 
and forced climate change to long-term trends?

• How well does a given model simulate the mean state, 
long-term trends, and modes of variability such as 
ENSO, NAO, AMV, PDV? 

• How do models compare with each other?                    
Are there true structural differences?

https://www.cesm.ucar.edu/projects/cvdp-le

Null hypothesis for any 
apparent model bias, 

inter-model difference, 
and projected change in 

variability should be 
“sampling fluctuations”.



Some Tools and Resources

https://climatedataguide.ucar.edu

http://www.cesm.ucar.edu/working_groups/CVC/cvdp/

US CLIVAR Working Group on Large Ensembles 
(credit to Flavio Lehner and Nicola Maher)

www.cesm.ucar.edu/community-
projects/mmlea
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evaluated using a different set of ensembles.  Model identification 

was removed and all models were put on a common grid.
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Aug. 29-31, 2023

Application to Observed SST Trends (1979-2022)

Raw

Estimated 
forced response 

(9 methods)

See Robb Wills’ Poster on Friday for further details.
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“The lifetime of a trend is the time it takes 
to be recognized” – Eugene Rasmussen
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The Atlantic Multidecadal Oscillation (AMO)
Index: 10-year low-pass filtered 

North Atlantic SST – Global mean SST (T2015)

1950-2018

The Internal Atlantic Multidecadal Oscillation (AMO)
Index: 10-year low-pass filtered 

North Atlantic SST’ (ensemble-mean removed at each location)

Deser and Phillips (2021)
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Observations CESM1 #13 CESM1 #14

Wittenberg et al., 2009; Newman et al., 2011; Deser et al., 2012

°C 

Detrended SST anomaly standard deviation (1920-2015)



Marine Heatwaves (> 90th percentile SST extremes, 1950-2022)

Composite 
Intensity

Composite 
Duration

CESM2 
(100-member SMILE)

CESM2 
(100-member SMILE)

Deser et al. (2024)



SST Trends 1979-2013

Kang et al. 2023


