Water resource-relevant hot-dry compound events in the Western US

Flavio Lehner^{1,2,3}

¹Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA ²Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ³Polar Bears International, Bozeman, MT, USA

with thanks to Rebecca Smith, Sarah Baker, Justin Mankin, Jeff Lukas, Scott Steinschneider, Jakob Zscheischler

CMIP6 projections and uncertainty sources

Upper Basin Projected Precipitation Change vs. 1971-2000, RCP4.5

CMIP6 projections and uncertainty sources

CMIP6 projections and uncertainty sources

Model weighting didn't change things a lot

9

Model weighting didn't change things a lot

No relationship between model bias and future projections

Lehner et al. (2020, *Earth Sys. Dyn.*)

Socio-economic constraints

Combined constraint

Lehner et al. (2020, Earth Sys. Dyn.)

Lehner et al. (2023, AGU Advances)

Combined constraint

Lehner et al. (2020, Earth Sys. Dyn.)

Lehner et al. (2023, AGU Advances)

Physical constraints (dynamics)

Models with the most extreme winter drying and summer wetting are less realistic

Lehner et al. (2020, *Earth Sys. Dyn.*)

Grise (2022, Geophys. Res. Letters); see also Simpson et al. (2015, Nat. Clim. Change)

20

Anthropogenic Aerosols Contribute to the Recent Decline in Precipitation Over the U.S. Southwest

Yan-Ning Kuo¹, Hanjun Kim¹, and Flavio Lehner^{1,2,3}

Lehner et al. (2020, Earth Sys. Dyn.)

Lehner et al. (2020, *Earth Sys. Dyn.*)

Lehner et al. (2020, Earth Sys. Dyn.)

Kuo et al (2023, Geophys. Res. Letters)

Attributing Compound Events to Anthropogenic Climate Change

Jakob Zscheischler and Flavio Lehner

Prospects of model weighting: compound statistics

Models tend to have a weak correlation between temperature and precipitation

Prospects of model weighting: compound statistics

Attributing Compound Events to Anthropogenic Climate Change

Jakob Zscheischler and Flavio Lehner

No model passes all tests \rightarrow model weighting

Can we constrain streamflow and reservoir storage projections?

Can we constrain streamflow and reservoir storage projections?

Preliminary!

Weighting scheme following Sanderson et al. (2015, *J. Clim.*) Knutti et al. (2017, *Geophys. Res. Let.*)

Simple reservoir model application

Barsugli and Lukas (2010, Western Water Assessment)

Simple reservoir model application

Reservoir model

Simple reservoir model application

Reservoir model

- >600 simulations
- 5 emissions scenarios
- 1 base demand scenario
- 1 set of runoff sensitivities

Conclusions

. . .

- Progress on constraints of regional climate change with help of large ensembles
- Exploring constraints in practical applications
- Caveats remain regarding model bias understanding Global temperature trends SST-affected teleconnections Land-atmosphere coupling

Climate Variability, Change, and Impacts

LEHNER RESEARCH GROUP – EARTH AND ATMOSPHERIC SCIENCES, CORNELL UNIVERSITY

Contact: <u>flavio.lehner@cornell.edu</u>

Extra

Physical constraints

Lehner et al. (2020, Earth Sys. Dyn.)

Grise (2022, Geophys. Res. Letters); see also Simpson et al. (2015, Nat. Clim. Change)

Reservoir model

Validation of recent runoff trends in Earth System Models (poster) Hanjun Kim

