Septembre 9, 2024

Toward a new parameterization of ocean-atmosphere interactions based on a machine learning approach

Ocean-atmosphere coupling

Nicolas Ernout, Lionel Renault, Ehouarn Simon, Rachid Benshila Sixin Zhang

1.

CONTEXT

Ocean-Atmosphere coupling

Atmospheric and oceanic models

To model accurately some processes:

- High resolution
- Coupling

Ideas for using IA:

- Stochastically predicting processes
- Improve parameterization at interfaces

Two main ocean-atmosphere interactions:

- Current feedback (CFB)
- Thermal feedback (TFB)

Current feedback

Mechanic loop between surface current and overlying wind

Part of eddy kinetic energy (EKE) is transferred from ocean to atmosphere (to 30% at mesoscale)

To apply atmosphere fluxes to ocean models:

- Simulation coupled to an atmospheric model
- Forced model, no feedback loop
- Forced model, with a parameterization of the CFB

Alternative approach:

 Forced model with a neural network that reproduces the effects of atmosphere-ocean coupling

To apply atmosphere fluxes to ocean models:

- Simulation coupled to an atmospheric model
- Forced model, no feedback loop
- Forced model, with a parameterization of the CFB

Alternative approach:

• Forced model with a neural network that reproduces the effects of atmosphere-ocean coupling

To apply atmosphere fluxes to ocean models:

- Simulation coupled to an atmospheric model
- Forced model, no feedback loop
- Forced model, with a parameterization of the CFB

Alternative approach:

 Forced model with a neural network that reproduces the effects of atmosphere-ocean coupling

Goal \Rightarrow Parametrize the mesoscale ocean-atmosphere coupling effects in forced model

Target \Rightarrow Mesoscale surface stress (no consideration of heat flux)

Consideration \Rightarrow Large scale atmospheric data and all oceanic data

Methodology:

- Define the data for the NN research
- Find a NN that can reproduce the mesoscale surface stress
- Verify that the founded NN reproduces the coupling effects

Input: u, v, u', v', $\overline{T_u}$, $\overline{T_v}$, \overline{Wp} , $\overline{u_{10}}$, $\overline{v_{10}}$, sst, sst', \overline{pblh} Output: T_u' , T_v'

2 learning areas:

- Kuroshio
- Agulhas Current
- 1 validation area: Gulf Stream

2 application areas:

- California coast
- Chile coast

Data :

- Coupled simulation (1/4° (~25 km), PULSATION project)
- Tropical realistic (45° N to 45°S)
- Daily output for 5 years
- Spatial filter: Gaussian filter (size: $4 \rightarrow 1^{\circ}$ (~100km))

Analysis :

- Correlation :
 - Surface currents and their anomalies
 - Magnitude of filtered wind and filtered wind
 - Filtered wind and filtered surface stress
 - Filtered pblh and magnitude of filtered wind
- No correlation: input and output
- Output: concentrated around zero

2.

RESULTS

Practical application

0.10

Referenc

0.10

0.05

0.00

-0.05

-0.10

-0.15 -0.10 -0.05 0.00 0.05

- \rightarrow Rapid convergence
- \rightarrow Snapshot ok, but can do better
- \rightarrow Average, correct pattern with bias
- \rightarrow Similar variability
- \rightarrow Distribution follows identity line well

 \Rightarrow Encouraging results

66°W 65°W 64°W 63°W 62°W 61°W 60°W

Many models tested (~ 150 models)

Best MSE on Gulf Stream

 \Rightarrow 1,619.10⁻⁴ with the following CNN :

• 256-1, 128-3, 64-5, 32-9

Using CNN instead of a classic NN greatly improves the results (if not overfitting)

No logic to find the right model :

⇒ Improvement and selection requires the continuation of an empirical approach in the choice of hyperparameters

California coast

Gulf Stream

S₊: Surface current curl and surface stress curl

Data : averaged over 29 days

Model: 2D: 256-1, 128-3, 64-5, 32-9

Results : Predicted slopes close to the coupled simulation

S₋: Surface current curl and surface stress curl

Data : averaged over 29 days

Model: 2D: 256-1, 128-3, 64-5, 32-9

Results: Prediction close to the coupled simulation

Differences: Predicted underestimated for AAC and EBUS

S_{str}: SST and surface stress magnitude

Data: averaged over 29 days

Model: 2D: 256-1, 128-3, 64-5, 32-9

Results: Prediction close to the coupled simulation

3.

CONCLUSION

Continuations and perspectives

Conclusion

- Using neural network for ocean-atmosphere coupling works well !!!
- CFB and **TFB** parametrization
- But lack fidelity to EBUS and ACC \Rightarrow Add new learning areas

- Integration of turbulent heat flux to account for all ocean-atmosphere exchanges
- Possibilities for improvement (data augmentation, skip connections, PINNs, and temporal considerations, ...)
- Offline results only at the moment \Rightarrow Integration of a NN into an ocean simulation

Thank you for your attention