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The future - finite times  

Climate Process Team: “Ocean Transport & Eddy Energy” to implement, 
assess, improve, & unify recent work on energetically-consistent ocean 
eddy momentum & tracer parametrizations in ocean-only and coupled 
climate models to improve model fidelity. 

https://ocean-eddy-cpt.github.io/ 
 

Postdoctoral positions available: 
Climate Process Team on Ocean Transport and Eddy Energy 

Funded by the National Oceanographic and Atmospheric Administration and the National Science Foundation 
 

  
 
Multiple postdoctoral research positions are available as part of a multi-institution Climate Process             
Team (CPT) on Ocean Transport and Eddy Energy. The CPT aims to survey, improve, and unify new                 
advances in energy-, flow-, and scale-aware parameterizations of mesoscale eddies, in process studies             
and global ocean models; constrain parameters and parameterized fluxes through a synthesis of             
up-to-date observations of ocean energetics and transport; and implement and assess schemes within             
IPCC-class climate models at NCAR, NOAA-GFDL, and DOE-LANL. The expectation is that            
modernized, energetically-consistent mesoscale eddy parameterizations will significantly reduce        
climate model biases in ocean currents, stratification, and transport. 
 

● New York University (Supervised by Laure Zanna): Unification of buoyancy and tracer closures; 
Assessment and parameterization of vertical energy structure; Parameterization of the grey 
zone. More information and application at https://apply.interfolio.com/68119. 

● University of Colorado, Boulder (Supervised by Ian Grooms): Assessment of 2D eddy energy 
equation; parameterization of eddy energy transport; parameterizing dissipation in the eddy 
energy equation. More information and application are at 
https://jobs.colorado.edu/jobs/JobDetail/?jobId=20799. 

● Woods Hole Oceanographic Institution (Supervised  by Sylvia Cole): Characterizing 
scale-dependent EKE from observations; quasi-3D eddy buoyancy and momentum statistics 
from observations; analysis of vertical eddy structure in observations; synthesis of observations. 
More information and application are at 
https://careers.whoi.edu/opportunities/view-all-openings/science-research/ (position 19-08-09). 

● Princeton University (Supervised by Alistair Adcroft): Implementation and assessment of extant 
parameterizations of mesoscale eddies in process, idealized and global ocean models; 
consistent and optimized formulation of closures; development and assessment of improved 
and unified closures; evaluation of new closures in climate models. More information and 
application at https://www.princeton.edu/acad-positions/position/13701. 

 
Applications must include a cover letter, a CV with a list of publications, a statement of research                 
interests, and contact information of 3 references. Applicants wishing to be considered for positions in               
multiple institutions should indicate this in their cover letter, and submit a separate application to each                
position of interest. For more information email Laure Zanna (laure.zanna@nyu.edu), or any of the              
collaborating PIs listed above. 
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Data-driven parameterization of 
mesoscale eddies using the 
Eliassen-Palm flux
CLIVAR-OMDP Workshop, September 2024
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Mesoscale Eddy Energy Cycle
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Energy cycle: A goal
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APE extraction via isopycnal flattening

Thickness flux

Down-scale energy transfer via APE extraction 
and up-scale energy transfer via KE 
backscatter are often parameterised separately

But they’re two essential aspects of one 
process

Parameterisation of Ocean mesoscale 
eddies whereby momentum and 

thickness fluxes are considered together
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To capture the full eddy energy cycle, we target the Eliassen-Palm Flux



Energy + Momentum + Thickness = Eliassen-Palm Flux
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MOM6 Double Gyre Configuration
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GFDL MOM6 ocean model in Double Gyre 
configuration 

• Two layers

• Initialized from rest

• Driven by wind and equilibrated by bottom friction

• Biharmonic Smagorinsky modelPerezhogin et al (2024)

Commonly used configuration as stepping stone e.g., 
Dhruv’s presentation; 

Perezhogin et al (2024); 

Zhang et al (2023)



Parameterisation Development: 1) High resolution data
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 Double Gyre simulation data at 
 resolution 1/32∘



Parameterisation Development: 2) Filter and coarsen
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Parameterisation Development: 3) Coarse flow-field representations
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Parameterisation Development: 4) Diagnose Eliassen-Palm Fluxes
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 resolution 1/32∘
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EPF tensor 
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Parameterisation Development: 5) Artificial Neural Network
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Based off of eddy energy system
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Offline performance on test data
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Offline performance on test data
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Online Implementation: Top Layer Mean Flow
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Online Implementation: Top Layer Mean Flow
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Online Implementation: Top Layer Mean Flow
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 flow field filtered and coarsened 
to  resolution.

1/32∘

1/4∘

 resolution run with EPF ANN 
parameterisation (in addition to 

Smagorinsky)

1/4∘

Averages over daily snapshots of ~ 10 simulation years

 resolution run with no 
parameterisation (only Smagorinsky)

1/4∘

̂u ̂v SSH

Pesky persistent eddy is 
weakened by parameterisation! 



Isotropic KE transfer spectra
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Isotropic Kinetic Energy transfer spectra
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Kinetic Energy 
backscatter

Large scale Small scale

Enstrophy 
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Only dissipation :(



Isotropic Kinetic Energy transfer spectra
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Kinetic Energy 
backscatter

Large scale Small scale

Enstrophy 
dissipation

Kinetic Energy 
backscatter!



Isotropic Kinetic Energy transfer spectra
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Kinetic Energy 
backscatter

Enstrophy 
dissipation

Not much 
improvement in 

bottom layer



Concluding remarks
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Initial data-driven parametrization to capture the mesoscale energy cycle using the Eliassen-Palm Flux 
tensor components:


Idealised runs, double gyre 

• Offline performance: 


• Room for improvement in training (more epochs, more data, regularization techniques, etc)

• … however, improvements offline do not guarantee improvements online


• Online performance: 

• Doesn’t blow up! 

• Weakens pesky persistent eddy in mean flow 

• Better representation of energy spectral transfer

• Still room for improvement 

Upcoming:

• How can we improve representation of thickness fluxes? 

• Improve ANN to be implemented


Use of eddy energy system to produce a single parameterisation that captures both momentum and 
thickness fluxes seems promising 



Supplementary Slides
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Supplementary Slide: Weighting layer influence during training
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‘Original’ ANN trained, where back-propagated loss 
depends equally on top and bottom layer 

Alternate ANN trained, where back-propagated 
loss depends only on the top layer 

Alternate ANN trained, where back-propagated 
loss depends only on the bottom layer 



Supplementary Slide: EPF parameterization contributions for top layer
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 resolution DG run with full EPF ANN 
parameterisation (in addition to 

Smagorinsky)

1/4∘

 resolution DG run with horizontal 
divergence of EPF (in addition to 

Smagorinsky)

1/4∘

 resolution DG run with vertical 
divergence of EPF (in addition to 

Smagorinsky)

1/4∘



Supplementary Slide: ANN with bottom topography ignored 
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Large-scale flow field: Bottom layer
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 flow field 
filtered and 

coarsened to 
 resolution.

1/32∘

1/4∘

 resolution run 
with EPF ANN 

parameterisation

1/4∘

 resolution 
run with no 

parameterisation

1/4∘

Momentum flux 
only

Thickness flux 
only



Strength of Parameterisation
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Does increasing the 
strength of the acceleration 
due to the parameterisation 
improve representation of 

the mean flow?


