Some insights on the spurious numerical mixing of the timestepping of advection schemes

Adrien Garinet

Patrick Marsaleix, Marine Hermann

COMMODORE Workshop 2024

Some insights on the <u>spurious</u> <u>numerical mixing</u> of the timestepping of <u>advection schemes</u>

Adrien Garinet

Patrick Marsaleix, Marine Hermann

COMMODORE Workshop 2024

Semi-discrete framework

Space-time fråmework

Mixing in the ocean

In numerical models :

Source : GFDL / Ocean Mixing

Mixing in the ocean

In numerical models : PRECIPITATION SENSIBLE TIDES WIND EVAPORATION STA SPRA KE / RIVERS Equations SURFACE WAVES & LANGMULR CIRCULATION ₹€ NETRATING RADIATION NEAR SURFACE SHEAR & MICROBREAKING SURFACE BOUNDARY LAYER EKMAN 9 TRANSPORT RING/WXING MESOSCALE EDDY STIRM INTERNAL WAVE OVERFLO SUBDUCTION/ CURRENTS/ CURRENTS/ TRANSPORTS INTERNAL MIXING PYCNOCLINE INTERNAL WAVE Numerical TOPOGRAPHIC methods TIDAL MIXING Errors ! Numerical **Source** : GFDL / Ocean Mixing mixing 6

Mixing in the ocean

Well-known problem in "fixed coordinates models

[Griffies et al. (2000)]

 Quantification in academical simulations

> [Burchard & Rennau (2008)] [Gibson et al. (2017)] [...]

Quantification in global models

[Lee et al. (2002)] [Megan (2018, 2023)] [Holmes et al. (2021)] [...] 10-2.0

10-25

10-3.0

10-35

1040

1045

10-5.0

10-55

10-60

Usual suspect 🚓 (in fixed coordinate models) :

$$\partial_t s = -\partial_z (ws) + \partial_z [K_z \partial_z s] + \dots$$

Vertical advection of tracer

Usual suspect 🚓 (in fixed coordinate models) :

$$\partial_t s = -\partial_z (ws) + \partial_z [K_z \partial_z s] + \dots$$

Vertical advection of tracer

Once discretized :

Diff_{num} W vertical speed

Usual suspect (in fixed coordinate models) :

A lot of work has been carried out to improve **vertical coordinates**.

Now, can we also work on
advection schemes ?

Outline

Spurious numerical

Semi-discrete framework

Space-time framework

Semi-discrete advection equation

Finite volume formulation

$$\frac{d}{dt}[s_j] = \mathrm{ADV}[w, s]_j$$

with, for linear schemes

 $ADV[w, s]_{j} = \mathcal{A}[w, s]_{j} + \mathcal{D}[w, s]_{j}$ controls
dispersion
errors

Semi-discrete advection equation

damping

Finite volume formulation

$$\frac{d}{dt}[s_j] = \mathrm{ADV}[w, s]_j$$

transport

with, for linear schemes

$$ADV[w,s]_j = \mathcal{A}[w,s]_j + \mathcal{D}[w,s]_j$$

controls dispersion errors

e.g. 3rd order upwind-biased scheme

$$DV_{UP3} = C_4 + D_4$$

$$\int_{-\frac{\partial^4 s}{\partial z^4}} dz^4$$

Semi-discrete advection equation

damping

Finite volume formulation

$$\frac{d}{dt}[s_j] = \mathrm{ADV}[w, s]_j$$

with, for linear schemes

e.g. 3rd order upwind-biased scheme

$$ADV[w,s]_j = \mathcal{A}[w,s]_j + \mathcal{D}[w,s]_j$$

transport

controls

dispersion

errors

$$ADV_{UP3} = C_4 + D_4$$

$$\sim \frac{\partial^4 s}{\partial z^4}$$
not scale selective enough !

Some results

Using

$\mathcal{D}[w,s]_j \sim \mathrm{D}_6$

 \rightarrow good results in a 5 km resolution model of the South-East Asian Seas (strong internal tides)

Some results

Using

$\mathcal{D}[w,s]_j \sim \mathrm{D}_6$

 \rightarrow good results in a 5 km resolution model of the South-East Asian Seas (strong internal tides)

Hereafter, we refer to the scheme as UP3-F ; implemented in the **Symphonie** ocean model.

More details can be found in :

Garinet *et al.* (2024) Spurious numerical mixing under strong tidal forcing: a case study in the South East Asian Seas using the Symphonie model (v3.1.2)

Validation in a realistic simulation

Space-time framework

Formally, a time-stepping scheme writes

$$s^{n+1} = \mathcal{F}(\{s^m\}_{m \le n}, \text{ADV})$$

We look for solutions in the form

 $(\rho^n)e^{i\theta}$

Amplification factor

Formally, a time-stepping scheme writes

$$s^{n+1} = \mathcal{F}(\{s^m\}_{m \le n}, \text{ADV})$$

We look for solutions in the form

Amplification factor

Angular wavenumber : $\theta = 2\pi / \lambda_N$

Wavelength in number of grid points

Formally, a time-stepping scheme writes

$$s^{n+1} = \mathcal{F}(\{s^m\}_{m \le n}, \text{ADV})$$

We look for solutions in the form

We are interested in

Amplification factor

 $\delta \rho = 1 - |\rho|$

Angular wavenumber : $\theta = 2\pi / \lambda_N$

Wavelength in number of grid points

Ideally $\delta
ho(heta\sim 0) pprox 0$ while $\delta
ho(heta\sim \pi)$ should be "large enough". (i.e. $\leq 10^{-4}$)

 $\Delta t \hat{\mathrm{DV}}(\theta) = \mu_r(\theta) + i \mu_i(\theta)$

Noting

29

Noting

$$\Delta t \hat{\mathrm{ADV}}(\theta) = \mu_r(\theta) + i \mu_i(\theta)$$

We end up solving for ρ one of these :

$$\begin{cases} s^{n+1,*} &= s^{n-1} - 2\frac{\Delta t}{\Delta x} \left[\mathcal{A}[s^{n,*}] + \mathcal{D}[s^{n-1}] \right] \\ s^n &= \chi s^{n+1,*} + (1 - 2\chi) s^{n,*} + \chi s^{n-1} \end{cases}$$

Amplification factor error as a function of Courant number and angular wavenumber for UP3 advection scheme, used along with LFRA time-stepping ($\chi = 0.05$).

Amplification factor error as a function of Courant number and angular wavenumber for both UP3 and UP3-F advection schemes used along with LFRA time-stepping ($\chi = 0.05$).

Symphonie SEA simulation [m.s⁻¹]

Amplification factor error as a function of Courant number and angular wavenumber for both UP3 and UP3-F advection schemes used along with LFRA time-stepping.

Stability domain

Goal

Get the advection scheme curve as close as possible to the domain's boundary

 μ_{\Re}

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$

We formulate the diffusive part as such

$$\mathcal{D}[s]_j = \mathbf{D}_4 \cdot (\mathbf{1} - \alpha \phi^{>1})[s]_j$$

where

$$\phi[s]_j = \frac{1}{4}(s_{j+1} + 2s_j + s_{j-1}) \left\{ \text{low-pass filter} \right\}$$

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$

We formulate the diffusive part as such

$$\mathcal{D}[s]_j = \mathrm{D}_4 \cdot (\mathbf{1} - \alpha \phi)[s]_j$$

where

$$\phi[s]_j = \frac{1}{4}(s_{j+1} + 2s_j + s_{j-1}) \left\{ \text{low-pass filter} \right\}$$

The scheme becomes **unstable** if $\alpha > 1$ is <u>constant</u> wrt. n_c

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$

We formulate the diffusive part as such

$$\mathcal{D}[s]_j = \mathbf{D}_4 \cdot (\mathbf{1} - \alpha \phi)[s]_j$$

where

$$\phi[s]_j = \frac{1}{4}(s_{j+1} + 2s_j + s_{j-1}) \left\{ \text{low-pass filter} \right\}$$

The scheme becomes **unstable** if $\alpha > 1$ is <u>constant</u> wrt. n_c

Thus :

$$\alpha(n_c) = 1 + n_c^{v} e^{-\xi n_c} \qquad t$$

to be determined !

Conclusions

- New way of formulating the spatial component of advection schemes to make up for the diffusion of the time-stepping
 - *anti-diffusion* can be added;
 - the diffusive component does not have to depend linearly on the speed.

(b) UP3- $F_{f(n_c)}$

Conclusions

Source : Lemarié et al. (2015)

Some more thoughts ?

- *Numerical* mixing seems to be "as high as" *physical* mixing :
 - To what extent do we want to reduce it ?
 - What is the role of numerical mixing in the "good" performances of numerical models ?
 - Is numerical mixing making up for a lack of physical mixing ?

(b) UP3- $F_{f(n_c)}$

Some more thoughts ?

