Some insights on the spurious numerical mixing of the timestepping of advection schemes

Adrien Garinet

Patrick Marsaleix, Marine Hermann

COMMODORE Workshop 2024



# Some insights on the spurious numerical mixing of the timestepping of advection schemes

Adrien Garinet

Patrick Marsaleix, Marine Hermann

COMMODORE Workshop 2024





### **Outline**

### Spurious numerical mixing

Semi-discrete framework



## Mixing in the ocean

#### In numerical models :**PRECIPITATION** SENSIBLE<br>MEAT **TIDES** WIND EVAPORATION **SEA SPRAY** ICE / **RIVERS** Equations SURFACE WAVES & LANGWUR CIRCULATION ≢⊛ **JETRATING MOITATION** NEAR SURFACE SURFACE BOUNDARY LAYER EKMAN 4 TRANSPORT MESOSCALE EDDY STIRRING/MIXING INTERNAL WAVE OVERFLOW SUBDUCTION/ CURRENTS/<br>TRANSPORTS CURRENTS/<br>TRANSPORTS INTERNAL MIXING PYCNOCLINE INTERNAL WAVE Numerical TOPOGRAPHIC methods TIDAL MIXING

Source : [GFDL / Ocean Mixing](https://www.gfdl.noaa.gov/ocean-mixing/)

## Mixing in the ocean



## Mixing in the ocean





Well-known problem in "fixed coordinates models

[ Griffies et al. (2000) ]

➢ Quantification in academical simulations

> [ Burchard & Rennau (2008) ] [ Gibson et al. (2017) ] [...]

➢ Quantification in global models

[ Lee et al. (2002) ] [ Megan (2018, 2023) ] [ Holmes et al. (2021) ]



### Usual suspect  $\clubsuit$  (in fixed coordinate models) :

$$
\partial_t s = -\partial_z (ws) + \partial_z [K_z \partial_z s] + ...
$$

### Vertical advection of tracer

Usual suspect  $\triangleq$  (in fixed coordinate models) :

$$
\partial_t s = -\partial_z (ws) + \partial_z [K_z \partial_z s] + ...
$$

Vertical advection of tracer

Once discretized :

 $Diff_{num}$  $\overline{w}$ vertical speed

vertica

speed

Usual suspect (in fixed coordinate models) :

A lot of work has been carried out to improve vertical coordinates.

Once discretiz We tical a Now, can we also work on advection schemes ?

### **Outline**

### Spurious numerical mixing

Semi-discrete framework

Space-time framework

### Semi-discrete advection equation

**Finite volume formulation** 

$$
\frac{d}{dt}[s_j] = \mathrm{ADV}[w, s]_j
$$

with, for linear schemes transport damping

$$
ADV[w,s]_j = \mathcal{A}[w,s]_j + \mathcal{D}[w,s]_j
$$
\ncontrols

\ncontrols

\ndispersion

errors

### Semi-discrete advection equation

**Finite volume formulation** 

$$
\frac{d}{dt}[s_j] = \text{ADV}[w, s]_j
$$

with, for linear schemes

$$
\text{ADV}[w,s]_j = \mathcal{A}[u], s]_j + \mathcal{D}[w], s]_j
$$

transport damping

e.g. 3<sup>rd</sup> order upwind-biased scheme

controls dispersion errors

$$
DV_{\text{UP3}} = C_4 + D_4
$$

$$
\frac{\partial^4 s}{\partial z^4}
$$

### Semi-discrete advection equation

**Finite volume formulation** 

$$
\frac{d}{dt}[s_j] = \text{ADV}[w, s]_j
$$

with, for linear schemes

e.g. 3<sup>rd</sup> order upwind-biased scheme

$$
\mathrm{ADV}[w, s]_j = \mathcal{A}[u], s]_j + \mathcal{D}[w, s]_j
$$

 $\sim$ 

 $\partial^4s$ 

 $\overline{\partial z^4}$ 

 $\mathrm{ADV_{UP3}} = \mathrm{C_4}$ 

transport damping

 $\mathrm{D}_4$ 

controls dispersion

errors

not scale selective enough !

18

### Some results

### **Using**

## $\mathcal{D}[w,s]_j \sim D_6$

 $\rightarrow$  good results in a 5 km resolution model of the South-East Asian Seas (strong internal tides)



19

### Some results

### **Using**

## $\mathcal{D}[w,s]_i \sim D_6$

 $\rightarrow$  good results in a 5 km resolution model of the South-East Asian Seas (strong internal tides)

Hereafter, we refer to the scheme as UP3-F ; implemented in the Symphonie ocean model.

More details can be found in :

Garinet et al. (2024) Spurious numerical mixing under strong tidal forcing: a case study in the South East Asian Seas using the Symphonie model (v3.1.2)

### Validation in a realistic simulation





Semi-discrete framework



Formally, a time-stepping scheme writes

$$
s^{n+1} = \mathcal{F}(\{s^m\}_{m \leq n}, \text{ADV})
$$

We look for solutions in the form



Amplification factor

Formally, a time-stepping scheme writes

$$
s^{n+1}=\mathcal{F}(\{s^m\}_{m\leq n},\mathrm{ADV})
$$

We look for solutions in the form

Amplification factor

Angular wavenumber :  $\theta = 2\pi\sqrt{l}/\lambda_N$ 

Wavelength in number of grid points

Formally, a time-stepping scheme writes

$$
s^{n+1} = \mathcal{F}(\{s^m\}_{m \leq n}, \mathrm{ADV})
$$

We look for solutions in the form



We are interested in

Amplification factor

$$
\delta\rho=1-|\rho|
$$

$$
\begin{array}{c}\n\text{Angular} \\
\text{wavenumber} : \theta = 2\pi \sqrt{\lambda_N} \end{array}
$$

Wavelength in number of grid points

Ideally  $\delta \rho(\theta \sim 0) \approx 0$  while  $\delta \rho(\theta \sim \pi)$  should be "large enough". (i.e.  $\leq 10^{-4}$  )

damping transport  $\Delta t \hat{A} \hat{D} V(\theta) = \mu_r(\theta) + i \mu_i(\theta)$ 

**Noting** 

**Noting** 

$$
\Delta t \widehat{A} \widehat{D} V(\theta) = \mu_r(\theta) + i \mu_i(\theta)
$$

We end up solving for  $\rho$  one of these :



$$
\begin{cases} s^{n+1,*} &= s^{n-1} - 2\frac{\Delta t}{\Delta x} \left[ \mathcal{A}[s^{n,*}] + \mathcal{D}[s^{n-1}] \right] \\ s^n &= \overline{\chi} s^{n+1,*} + (1 - 2\chi)s^{n,*} + \chi s^{n-1} \end{cases}
$$



Amplification factor error as a function of Courant number and angular wavenumber for UP3 advection scheme, used along with LFRA time-stepping  $(\chi = 0.05)$ .



Amplification factor error as a function of Courant number and angular wavenumber for both UP3 and UP3-F advection schemes used along with LFRA time-stepping  $(\chi = 0.05)$ .



Symphonie SEA simulation [m.s-1]



Amplification factor error as a function of Courant number and angular wavenumber for both UP3 and UP3-F advection schemes used along with LFRA time-stepping.





## Stability domain













### Goal

Get the advection scheme curve as close as possible to the domain's boundary

 $\mu_{\mathfrak{R}}$ 

 $\log \delta \rho(n_c, \theta)$ 

 $-10$ 



44







#### We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c, \theta) > 0$ 

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c, \theta) > 0$ 

We formulate the diffusive part as such

$$
\mathcal{D}[s]_j = \mathrm{D}_4 \cdot (\mathbf{1} \textcolor{red}{-} \textcolor{blue}{\textcolor{blue}{\widehat{\mathcal{O}}}}\textcolor{blue}{}) [s]_j
$$

where

$$
\phi[s]_j = \frac{1}{4}(s_{j+1}+2s_j+s_{j-1})\,\Big\} {\scriptstyle \textsf{low-pass filter}}
$$

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$ 

We formulate the diffusive part as such

$$
\mathcal{D}[s]_j = \mathrm{D}_4 \cdot (\mathbf{1} \textcolor{red}{-} \textcolor{blue}{\textcolor{blue}{\widehat{\mathcal{O}}}}\textcolor{blue}{)}^\textcolor{red}{\widehat{s}}]_j
$$

where

$$
\phi[s]_j = \frac{1}{4}(s_{j+1} + 2s_j + s_{j-1})
$$
low-pass filter

The scheme becomes **unstable** if  $\alpha > 1$  is constant wrt.  $n_c$ 

We want to introduce *anti-diffusion* at certain scales, i.e. have

 $\mu_r(n_c,\theta) > 0$ 

We formulate the diffusive part as such

$$
\mathcal{D}[s]_j = \mathrm{D}_4 \cdot (\mathbf{1} \textcolor{red}{-} \textcolor{blue}{\textcolor{blue}{\widehat{\mathcal{O}}}}\textcolor{blue}{)}^\textcolor{red}{\widehat{s}}]_j
$$

where

$$
\phi[s]_j = \frac{1}{4}(s_{j+1} + 2s_j + s_{j-1})
$$
}<sub>low-pass filter</sub>

The scheme becomes **unstable** if  $\alpha > 1$  is constant wrt.  $n_c$ 

Thus: 
$$
\alpha(n_c) = 1 + n_c^{\omega_c}
$$
 to be determined!







<sup>55</sup>

### **Conclusions**

- New way of formulating the spatial component of advection schemes to make up for the diffusion of the time-stepping
	- anti-diffusion can be added;
	- the diffusive component does not have to depend linearly on the speed.

(b) UP3- $F_{f(n_c)}$ 



### Conclusions



Source : Lemarié et al. (2015)

## Some more thoughts ?

- Numerical mixing seems to be "as high as" *physical* mixing :
	- To what extent do we want to reduce it ?
	- What is the role of numerical mixing in the "good" performances of numerical models ?
	- $\triangleright$  Is numerical mixing making up for a lack of physical mixing ?

(b) UP3- $F_{f(n_c)}$ 



## Some more thoughts ?

