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Summary



Neural networks (NNs) are mostly used alongside traditional ocean models to 
improve simulations and predictions. The Spherical Fourier Neural Operator 
(bottom right figure) has been  successful in emulating long-term atmospheric 
and ocean circulation dynamics.

However, if you wish to apply it to a different domain with constraints different 
from those used during its training, it will need to be retrained.

Introduction

We propose using regional ocean model 
simulations to train a NN with inherently 
integrated physical principles to evolve the 
discrete Navier-Stokes equations across 
different spatial resolutions and domains.



Regional Ocean Model (ROMS/CROCO)
The Barotropic approximation refer to systems where the pressure depends 
only on height, ignoring vertical pressure gradients and variations.

In this approximation, the state of the system is fully determined by the 
barotropic momentum, and the geopotential height or pressure horizontal 
fields



Regional Ocean Model (ROMS/CROCO)
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Regional Ocean Model (ROMS/CROCO)

Fast step



Regional Ocean Model (ROMS/CROCO)

Slow step



CROCO Barotropic Simulation

To train a network to simulate the dynamics of the 
ocean system similarly to a regional model, we must 
start with the barotropic dynamics.

A barotropic simulation of dt=15s is used to train the 
neural network. At this stage, the simulation used to 
train and validate the network is not realistic. The 
goal is simply to enable the network to learn and 
embed the dynamics of the regional model.

The training set used is the South Atlantic Circulation 
System at low resolution (⅓ of degree resolution) 
and the cross validation is done with the Benguela 
region at high resolution (1/12 of degree resolution).



At each grid point, we use the simulations' barotropic 
variables, Coriolis parameter, and topography, both 
present and past, to define a vector (    ) that represents 
that grid point and its neighbors at that time.

This vector will be used to train the neural network to 
model the evolution of barotropic sea surface height.

Input Vectors



encoder

Consistent Koopman AutoEncoder

The input vector enters the network through the encoder
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Consistent Koopman AutoEncoder

The dynamics is evolved in the high dimensional latent space



decoder

Consistent Koopman AutoEncoder

The modeled system is recovered through the decoder
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Consistent Koopman AutoEncoder

encoder linear 
operator decoder

This network evolves each grid point in parallel



South Atlantic at low resolution (204x108 pixels) - Training Set
Benguela Region at High Resolution (362x461 pixels) - Validation Set

Consistent Koopman AutoEncoder
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Consistent Koopman AutoEncoder



Loss Functions



Results

The results presented here are from a network with approximately 120,000 
parameters. The encoder and decoder each have 2 hidden layers with 128 
neurons, while the linear operator has 100 neurons. The model was trained 
for 300 epochs, which took 10 hours on a single GPU.



Results

Auto-Encoder Training



Results

Auto-Encoder Training



Results

The network can encode the sea surface height at different 
ocean domains and resolutions.



Results
North Atlantic Circulation System

West Pacific Circulation System

High Resolution SACS



Results

The evolution of the system's dynamics is accumulating 
errors at each time step.

While the error for a single step is small, after 60 iterations 
of the barotropic simulation, the results diverge from the 
true values.





Results

Loss functions per epoch of Training. From left to right: loss in 1 integration 
step, 5 steps, 30 steps, and 60 steps. Loss identity in black, loss forward in blue, 
loss backward in red.



Results

Is the dimension of the linear operator too small to linearize the dynamics?



Results
The results evolving the system forward in time using a simple non-linear 
Multilayer neural network (three layers of 200 neurons) are better.



Results

Loss functions per epoch of training including Multilayer neural network in yellow.
The non-linear network has an error one order of magnitude smaller than the 
linear network. This suggests that adjusting the Koopman dimension of the linear 
operator could significantly improve its predictions.



Conclusion
It appears feasible to integrate the barotropic dynamics of the regional 
oceanic model with a simple non-linear multi-layer network.

Next steps:

● Improve the physics informed Neural Network (Koopman 
AutoEncoder) to capture the barotropic dynamics.

● Train a network to integrate the baroclinic dynamics of the regional 
model.

● Fine tuning the model using observational/reanalysis data to create 
more realistic simulations and study eddy formation zones.



Thank you for your attention


