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Is Oceanography

a “big data”
science?

Yes & No...



Oceanography:
A sparse data
problem...
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an eclectic, patchy, heterogeneous

observing system

Two incomplete

knowledge

reservoirs numerical models
that require
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[ BON ) @ Meeting Info QU Ocean Model Development, Data-driven Parameterizations, and Machine Learning in Ocean Models of the Earth System Workshop 04:1

Viewing MSR Presentation laptop's screen — 100% + &) ‘4, Annotate

Session 1: Ocean Dynamics and Circulation

1. How have the recent advances in ocean modeling helped our
understanding of the ocean’s dynamics and the role of the
ocean in the climate system? How does understanding

dynamics feed into-imprevirg-OcCMs2

2. How can we better use observations to evaluate and advance
ocean models? Do we have the observations needed,
including for evaluating high-resolution models?

3. Is the ocean modeling community tackling the relevant
problems, including model development efforts?

4. What are your thoughts on a hierarchical modeling approach
from coarse to ultra-high resolution modeling?



What is Data Assimilation /[ Inverse Modeling?

Kaminski et al., The Cryosphere (2015):

“Ideally, ...
.. all observational data streams are interpreted simultaneously,

.. with the process information provided by the model,

..[which leads to] a consistent picture of the state of the system,
..that balances all the observational constraints,

.. taking into account all the respective uncertainty ranges.”



What is Data Assimilation /[ Inverse Modeling?

Penny et al., Front. Mar. Sci. (2019):

“DA allows information provided from observations to be propagated
in time and space to unobserved areas using the dynamical and
physical constraints imposed by numerical models.”



Data Assimilation

and Inverse
Modeling

The DA [ inverse problem is
learning from ...

e aset of available (usually sparse,
heterogeneous) observations

e ... AND known physics/dynamics,

e ... by solving a gigantic least-squares
model-data misfit minimization



Discrete Inverse and
State Estimation Problems

With Geophysical Fluid Applications

The Ocean
Circulation
Inverse Problem

Carl wunsch

CAMBRIDGE

Carl Wunsch



What do we mean by
‘“Learning’”?



Physical model




Learn model parameters

Physical model has many

empirical parameters:

* constitutive laws Param. Param. Param.

* subgrid-scale
parameterization schemes Physical model

scheme 1 scheme i scheme n




Learn model parameters

Physical model has many

empirical parameters:

* constitutive laws

* subgrid-scale
parameterization schemes

parameter estimation
using observations is

essential

Param.
scheme 1

Param.
scheme i

Physical model

Padaram.
scheme n

THE ART AND SCIENCE OF
CLIMATE MODEL TUNING

FREDERIC HOURDIN, THORSTEN MAURITSEN, ANDREW GETTELMAN, JEAN-CHRISTOPHE GOLAZ,
VENKATRAMANI BALAJI, QINGYUN DuaN, Doris FoLiNi, DuoyiING Ji, DANIEL KLockg, YUN QIAN,
FLorIAN RAUSER, CATHERINE R10, LORENZO ToMAssINI, MASAHIRO VWATANABE, AND DANIEL WILLIAMSON

We survey the rationale and diversity of approaches for tuning, a fundamental aspect of

climate modeling, which should be more systematically documented and taken into account

In multimodel analysis.

BAMS




Learn model parameters

Physical model has many

empirical parameters:

* constitutive laws Param. Param. Param.

* subgrid-scale
parameterization schemes Physical model

scheme 1 - scheme i . scheme n

parameter estimation

Ocean Sci., 11, 839-853, 2015

- www.ocean-sci.net/11/839/2015/ : '
to calibrate model | iiivsssesors Ocean Science -
© Author(s) 2015. CC Attribution 3.0 License.

parameters

On the observability of turbulent transport rates by Argo:
supporting evidence from an inversion experiment

G. Forgetl, D. Ferreira2, and X. Liang1




Learn model parameters

Physical model has many

empirical parameters:

* constitutive laws Param. Param. Param.

* subgrid-scale
parameterization schemes Physical model

scheme 1 scheme i scheme n

parameter EStimation Ocean Sci., 18, 729-759, 2022

https://doi.org/10.5194/0s-18-729-2022 Ocean Science

to calibrate model e reaive Commons Atition 4.0 Loene.
parameters S

Tracer and observationally derived constraints on diapycnal
diffusivities in an ocean state estimate

David S. Trossman!-2, Caitlin B. Whalen, Thomas W. N. Haine*, Amy F. Waterhouse’, An T. Nguyen®,
Arash Bigdeli’, Matthew Mazloff’, and Patrick Heimbach®8




Learn surrogate (e.g., NN) of model’s parameterization scheme

Parameterization scheme(s)
is replaced by neural network

Neural Network

NN is trained on high- sax  forscheme#
fidelity simulation Physical model
data which resolve
scales to be
parameterized




Learn surrogate (e.g., NN) of model’s parameterization scheme

Parameterization scheme(s)

is replaced by neural network

Neural Network

NN is trained on high- for scheme #

fidelity simulation Physical model

data which resolve o B __ .

scales to be 5 P E V)=V (+V®) + Fo {V S}

parameterized
== . -

a priori [ offline learning

Zanna & Bolton (2021) oo e e o e o0



Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s)
is replaced by neural network

Neural Network

Training of the NN is txs  forschemes
part of “training” of Physical model
the physical model
on state variables




Learn hybrid physical/surrogate (NN) model

Parameterization scheme(s)
is replaced by neural network

Neural Network

Training of the NN is txs  forschemes
part of “training” of Physical model
the physical model
on state variables

a posteriori [ fulll-model
[ online / end-to-end
learning




Learn model initial conditions

P
Find best initial conditions | [ ]
that will produce optimal Y icial l
forecast... § cond. |
| ne
. . |
The filtering |
problem of optimal |
estimation & control ==/

Initialization for
prediction/extrapolation
as practiced in

numerical weather
prediction




Learn model time-evolving state

Find model inputs that
produce the best dynamically
consistent state

The smoothing
problem of optimal
estimation & control

State & parameter estimation
for:

* Interpolation/reconstruction
* transient calibration




Learn model boundary conditions

. ( \
Observations of ocean

interior, combined with
global & local mass/tracer
conservation enables ...

t—/

... inversion for surface | air-sea fluxes of CO, inferred from interior measurements |
fluxes that are
required to match
interior observations

Example for CO, air-sea fluxes

(similar for heat fluxes) SOCCOM



A key unifying computational framework of “learning from data’

ient- imization:  JE@)1!
Gradient-based optimization: I R

Lyt

)

e inversion (physical models)

— seek uncertain input /
control variables /

- "\_\\
parameters o e
e training (neural networks) /( ; Saeﬂspace
— seek uncertain weights of |
NN representation o R ea
N X s
] [ ° -(/ & ) - A\ |./
Adjoint / backpropagation < m# "
D) ) of =(m) [ E
essential tool for computing (i 1) ;
""""""""""""" s, ICOTTO] SPAICE

high-dimensional gradients! g ® g i



Full-model Can we integrate the

learning

surrogate model training
within full-model calibration




> ™ [ )] 8 djdearth.github.io

RESEARCH RESOURCES TEAM NEWS PUBLICATION.

Cyberinfrastructure for Sustained

Scientific Innovation (CSSI) NSF C55I: D J 4E ar th
Convergence of Bayesian inverse
https://DJ4Earth.github.io methods and scientific machine learning

through universal differentiable programming




An end-to-end adjoint enables full-model calibration & initialization

Surface boundary condition / air-sea flux param.

Initial
cond. surrogate surrogate surrogate
- model 1 model i model n

L — -

\-----,

-

Here: use of full-model differentiable programming to

* replace parts of model by appropriate surrogates

e use all available observations to train/calibrate all uncertain variables
* combines inverse modeling and ML in end-to-end learning

relies on general-purpose automatic differentiation (AD)



Since 2023 the idea of differentiable programming has taken o

Geosci. Model Dev., 16, 3123-3135, 2023
https://doi.org/10.5194/gmd-16-3123-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Differentiable programming for Earth system modeling

Maximilian Gelbrecht!-2, Alistair White!-2, Sebastian Bathianyl’z, and Niklas Boers!23

IEarth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany
2Potsdam Institute for Climate Impact Research, Potsdam, Germany
3Department of Mathematics and Global Systems Institute, University of Exeter, Exeter, UK




Since 2023 the idea of differentiable programming has taken off ...

Geosci. Model Dev., 16, 3123-3135, 2023
https://doi.org/10.5194/gmd-16-3123-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Maximilian Gelbrecht!-?, Alistair White'-?, Sebastia
IEarth System Modelling, School of Engineering and D




Since 2023 the idea of dij

erentiable programming has taken o;

Geosci




Since 2023 the idea of differentiable programming has taken o

Neural general circulation models for
/| weather and climate

— | https://doi.org/10.1038/s41586-024-07744-y  Dmitrii Kochkov'®*, Janni Yuval'¢*, lan Langmore'¢, Peter Norgaard'¢, Jamie Smith'S,
Griffin Mooers', Milan Kléwer?, James Lottes', Stephan Rasp', Peter Diiben®, Sam Hatfield?®,
Peter Battaglia®, Alvaro Sanchez-Gonzalez*, Matthew Willson®, Michael P. Brenner'® &
Accepted: 15 June 2024 Stephan Hoyer'®™

Published online: 22 July 2024

Received: 13 November 2023




Why Julia?

1/ Building on Climate
Modeling Alliance (CliMA)

CLIMATE MODELING
ALLIANCE

SRS

=i i w‘“}f* S
A NEW APPROACH TO CLIMATE
MODELING

—_—

=== 0" o 0
=il L5
CLIMATE MACHINE SCALABLE PLATFORM OPEN HUB
SCHMIDT FUTURES «@: Dm PA = HESING sIMONS
. = T

Y PDE-Constrained Y
| Optimal Control |

P’ Surrogate Training, Y
\ ‘Mrodel Discovery, etc. 4

2/ Serious efforts in AD,

differentiable programming

The SciML Common Interface, Oversimplified
High Level Model Symbolic-Numeric

Representation Internal Package Handling

Problem

PDif€arth

3/ Harness next-gen.
compute architecture

JULIA: COME FOR THE
SYNTAX, STAY FOR THE SPEED

Researchers often find themselves coding algorithms in one programming language, only
to have to rewrite them in a faster one. An up-and-coming language could be the answer.

1 AUGUST 2019 | VOL 572 | NATURE

SIAM REVIEW
Vol. 59, No. I, pp. 65-98

Julia: A Fresh Approach to
Numerical Computing™




ClimaOcean.jl:
Ocean model component of the Climate Model Alliance (CliMA) model

J {)’ S @ Finite volume, rotating, stratified fluids
2 model for geophysical fluid dynamics (GFD).

@ \Written from scratch in Julia
@® Multiple simulation options.
_ , o , @ GPU and CPU via kernel abstractions
Ali Ramadhan’, Gregory LeClaire Wagner!, Chris Hill', Jean-Michel . . . . .
Campin?, Valentin Churavy!, Tim Besard?, Andre Souza®, Alan . Parallelize usmg MPI]I and multl-threadlng

Edelman!, Raffaele Ferrari', and John Marshall*

The Journal of Open Source Software

Oceananigans.jl: Fast and friendly geophysical fluid
dynamics on GPUs

1 Massachusetts Institute of Technology 2 Julia Computing, Inc.

x velocity, t = 60.80

https://github.com/clima/Oceananigans.||



Differentiable programming for full-model / end-to-end learning

Differentiating GPU-enabled ocean model
in Julia via the AD tool Enzyme.jl

Oceananigans.jl

Dgiiniza ~ Optimize (Silvestri et al., arXiv, 2023, 2024)
| ) o i | OceananigansR12
Enzyme 10 \ ') | CodeGen a
@> s _
& Moses, Churavy, et al., SC’21

0

DJAEarth
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Derivatives are ubiquitous in machine learning (training neural
networks, Bayesian inference), scientific computing (uncertainty
quantification, simulation)

Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

-

Enzyme synthesizes derivatives of arbitrary code within the compiler W. Moses V. Churavy

Differentiate code in any LLVM-based language (C/C++, Julia,
Rust, Swift, Fortran, Python, etc) without rewriting it!

Operating after and alongside program optimization generates
asymptotically and empirically faster derivatives

e i

First automatic differentiation tool to handle arbitrary GPU kernels M. Schanen S H K Narayanan



Three initial Earth system applications DJA€Earth

Ocean Seaice Ice sheets

S. Williamson J. Kump N. Loose S. Silvestri G. Wagner

M. Morlighem C. Gong

A

e Bringing together concepts from ...
— ... big data science & sparse data science
— ...computer science & computational science
— ...scientific machine learning & simulation-based science
e Sensitivity/gradient information is a powerful ingredient; obtained via
— differentiable programming [ simulators
— general-purpose automatic differentiation (AD)



Minitutorials during SIAM Mathematics for Planet Earth 2024
https://github.com/DJ4Earth/MPE24

M«w Input your search... J Get Involved
Society for Industrial and Applied Mathematics

Home Publicationsv Research Areasv Conferencesv Careersv Students & Educationv Membershipv Prizes & RecognitionVv

MPE24 Home Registration Lodging & Support ¥ Program = Submissions & Deadlines Sponsors About SIAM Conferences ¥

SIAM Conference on Mathematics of Planet Earth (MPE24)

Minitutorials

Differentiable Earth System Models in Julia

Joseph L. Kump, University of Texas, U.S.
Sarah M. Williamson, University of Texas, U.S.
Gong Cheng, Dartmouth College, U.S.

Differentiable Programming in Julia with Enzyme

Valentin Churavy, Massachusetts Institute of Technology, U.S.

William Moses, University of lllinois Urbana-Champaign, U.S.

Michel Schanen, Argonne National Laboratory, U.S. D' 4 E Q 't h




