

LEARNING FROM (SPARSE) OBSERVATIONS THROUGH THE LENS OF MODELS

Patrick Heimbach, the DJ4Earth & ECCO groups The University of Texas at Austin, TX

> https://ecco-group.org https://crios-ut.github.io https://dj4earth.github.io

Altimetry-FO (Formulation in FY16; Sentinel-6/Jason-CS)

ISS

SMAP

Suomi NPP

(NOAA)

Landsat 8

GPM

 $(USGS)$

Earth Science Instruments on ISS: RapidScat, CATS, LIS, SAGE III (on ISS), TSIS-1/2, OCO-3, ECOSTRESS, GEDI, CLARREO-PF

PACE NI-SA **SWOT TEMPO JPSS-2 (NOAA)** RBI, OMPS-Limb **GRACE-FO (2)** ICESat-2 **CYGNSS** SORCE, **NISTAR, EPIC CTE** (NOAA) AA's DSCOVR' **QuikSCAT Is Earth Science Landsat 7** (USGS) **Terra a Big Data** Aqua **Science?CloudSat CALIPSO** Aura

Is Oceanography a "big data" science?

Yes & No …

Oceanography: A *sparse data* **problem …**

Observational sampling coverage for ocean temperature in the upper 2000 m 1950 – 2010 (mean ocean depth: $~100 \text{ m}$)

(colors refer to depth ranges)

 0.5

Two incomplete knowledge reservoirs

an eclectic, patchy, heterogeneous

observing system

numerical models

that require

uncertain

inputs

Viewing MSR Presentation laptop's screen

 $04:$

- 1. How have the recent advances in ocean modeling helped our understanding of the ocean's dynamics and the role of the ocean in the climate system? How does understanding dynamics feed into improving OGCMs?
- 2. How can we better use observations to evaluate and advance ocean models? Do we have the observations needed, including for evaluating high-resolution models?
- 3. Is the ocean modeling community tackling the relevant problems, including model development efforts?
- 4. What are your thoughts on a hierarchical modeling approach from coarse to ultra-high resolution modeling?

What is Data Assimilation / Inverse Modeling?

Kaminski et al., The Cryosphere (2015):

 $"$ Ideally, ...

... all observational data streams are interpreted simultaneously, ... with the process information provided by the model, ... [which leads to] a consistent picture of the state of the system, ... that balances all the observational constraints, ... taking into account all the respective uncertainty ranges."

Penny et al., Front. Mar. Sci. (2019):

 \degree DA allows information provided from o b s e^{i} rvations \dagger o be propaga \Diamond \sim in time and space to unobserved areas using the dynamical and \sim physical constraints imposed by numerical models,

What is Data Assimilation / Inverse Modeling?

<u>Kaminski et al., The Cryosphere (2015):</u>

deall

- . all observational data streams are interpreted simultaneously, \angle
- with the process information provided by the model, –
- [which leads to] a consistent pisture of the state of the system, $\frac{1}{\sqrt{2}}$
- .. that balances all the observational constraints, –
- ... taking into account all the respective uncertainty ranges. $\hspace{0.1mm}$

Penny et al., Front. Mar. Sci. (2019):

"DA allows information provided from observations to be propagated in time and space to unobserved areas using the dynamical and physical constraints imposed by numerical models."

Data Assimilation and Inverse Modeling

The DA / inverse problem is learning from …

- a set of available (usually sparse, heterogeneous) observations
- ... AND known physics/dynamics,
- ... by solving a gigantic least-squares model-data misfit minimization

"Data assimilation" is much more than its use in numerical weather prediction

Discrete Inverse and State Estimation Problems

With Geophysical Fluid Applications

Carl Wunsch

CAMBRIDG

What do we mean by **"***Learning***"?**

Learn …

Physical model has many empirical parameters:

- constitutive laws
- subgrid-scale parameterization schemes

Physical model has many empirical parameters:

- constitutive laws
- subgrid-scale parameterization schemes

parameter estimation using observations is essential

THE ART AND SCIENCE OF CLIMATE MODEL TUNING BAMS

FRÉDÉRIC HOURDIN, THORSTEN MAURITSEN, ANDREW GETTELMAN, JEAN-CHRISTOPHE GOLAZ, VENKATRAMANI BALAJI, QINGYUN DUAN, DORIS FOLINI, DUOYING JI, DANIEL KLOCKE, YUN QIAN, FLORIAN RAUSER, CATHERINE RIO, LORENZO TOMASSINI, MASAHIRO WATANABE, AND DANIEL WILLIAMSON

We survey the rationale and diversity of approaches for tuning, a fundamental aspect of climate modeling, which should be more systematically documented and taken into account in multimodel analysis.

Physical model has many empirical parameters:

- constitutive laws
- subgrid-scale parameterization schemes

parameter estimation to calibrate model parameters

Ocean Sci., 11, 839-853, 2015 www.ocean-sci.net/11/839/2015/ doi:10.5194/os-11-839-2015 © Author(s) 2015. CC Attribution 3.0 License.

Ocean Science

On the observability of turbulent transport rates by Argo: supporting evidence from an inversion experiment

G. Forget¹, D. Ferreira², and X. Liang¹

 \circledcirc

Physical model has many empirical parameters:

- constitutive laws
- subgrid-scale parameterization schemes

parameter estimation to calibrate model parameters

Ocean Sci., 18, 729-759, 2022 https://doi.org/10.5194/os-18-729-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate

Ocean Science

David S. Trossman^{1,2}, Caitlin B. Whalen³, Thomas W. N. Haine⁴, Amy F. Waterhouse⁵, An T. Nguyen⁶, Arash Bigdeli⁷, Matthew Mazloff⁵, and Patrick Heimbach^{6,8}

Learn surrogate (e.g., NN) of *model's parameterization scheme*

Parameterization scheme(s) is replaced by neural network

NN is trained on highfidelity simulation data which resolve scales to be parameterized

Learn surrogate (e.g., NN) of *model's parameterization scheme*

Parameterization scheme(s) is replaced by neural network

NN is trained on highfidelity simulation data which resolve scales to be parameterized

Learn *hybrid* **physical/surrogate (NN) model**

Parameterization scheme(s) is replaced by neural network

Training of the NN is part of "training" of the physical model on state variables

Learn *hybrid* **physical/surrogate (NN) model**

Parameterization scheme(s) is replaced by neural network

Training of the NN is part of "training" of the physical model on state variables

+

a posteriori / full-model / online / end-to-end learning

Learn model *initial conditions*

Find best initial conditions that will produce optimal forecast …

The filtering problem of optimal estimation & control

Initialization for prediction/extrapolation as practiced in *numerical weather prediction*

Learn model *time-evolving state*

Find model inputs that produce the best dynamically consistent state

The smoothing problem of optimal estimation & control

State & parameter estimation for:

- *Interpolation/reconstruction*
- *transient calibration*

Learn model *boundary conditions*

Observations of **ocean** interior, combined with global & local mass/tracer conservation enables …

…inversion for surface fluxes that are required to match interior observations

Example for $CO₂$ air-sea fluxes (similar for heat fluxes)

air-sea fluxes of CO₂ inferred from interior measurements

SOCCOM

A key unifying computational framework of "*learning from data***"**

Full-model learning

Can we integrate the surrogate model training within full-model calibration

DJ4Earth

RESEARCH RESOURCES TEAM NEWS PUBLICATION.

 \circ

Cyberinfrastructure for Sustained Scientific Innovation (CSSI)

NSF CSSI: *DJ4Earth*

Convergence of Bayesian inverse methods and scientific machine learning through universal differentiable programming

https://DJ4Earth.github.io

An end-to-end adjoint enables full-model calibration & initialization

Here: use of full-model *differentiable programming* to

- replace parts of model by appropriate surrogates
- use all available observations to train/calibrate all uncertain variables
- combines inverse modeling and ML in *end-to-end learning*

relies on general-purpose automatic differentiation (AD)

Since 2023 the idea of differentiable programming has taken off …

Geosci. Model Dev., 16, 3123-3135, 2023 https://doi.org/10.5194/gmd-16-3123-2023 \odot Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Differentiable programming for Earth system modeling

Maximilian Gelbrecht^{1,2}, Alistair White^{1,2}, Sebastian Bathiany^{1,2}, and Niklas Boers^{1,2,3}

¹Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany ²Potsdam Institute for Climate Impact Research, Potsdam, Germany ³Department of Mathematics and Global Systems Institute, University of Exeter, Exeter, UK

""ge, Patrick Heimbach, A list of authors and their affirm

Why Julia?

DJ4Earth

1/ Building on *Climate Modeling Alliance (CliMA)*

2/ Serious efforts in AD, *differentiable programming*

3/ Harness next-gen. compute architecture

1 AUGUST 2019 | VOL 572 | NATURE

SIAM REVIEW Vol. 59, No. 1, pp. 65–98

Internally Handled By

DiffEgFlux

parseDiffTool:
FiniteDiff.il

Julia: A Fresh Approach to **Numerical Computing***

ClimaOcean.jl:

Ocean model component of the *Climate Model Alliance (CliMA) model*

Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs

Ali Ramadhan¹, Gregory LeClaire Wagner¹, Chris Hill¹, Jean-Michel Campin¹, Valentin Churavy¹, Tim Besard², Andre Souza¹, Alan Edelman¹, Raffaele Ferrari¹, and John Marshall¹

1 Massachusetts Institute of Technology 2 Julia Computing, Inc.

https://github.com/clima/Oceananigans.jl

- Finite volume, rotating, stratified fluids model for geophysical fluid dynamics (GFD).
- Written from scratch in Julia
- Multiple simulation options.
- GPU and CPU via kernel abstractions
- Parallelize using MPI.jl and multi-threading

Differentiable programming for full-model / end-to-end learning

Differentiating GPU-enabled ocean model in Julia via the AD tool *Enzyme.jl*

$\partial \partial_x$ Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

- Derivatives are ubiquitous in machine learning (training neural networks, Bayesian inference), scientific computing (uncertainty quantification, simulation)
- Enzyme synthesizes derivatives of arbitrary code within the compiler
	- Differentiate code in any LLVM-based language (C/C++, Julia, Rust, Swift, Fortran, Python, etc) *without rewriting it*!
	- Operating after and alongside program optimization generates asymptotically and empirically faster derivatives
	- First automatic differentiation tool to handle arbitrary GPU kernels

W. Moses V. Churavy **1**

M. Schanen S H K Narayanan

X • Used by Harvard, Facebook, AMD, ANL, UT Austin, NASA, Dartmouth, CU Boulder, TU Munich, and startups for climate simulation, material science, ML, and more!

Three initial Earth system applications

DJ4Earth

Ocean Sea ice Ice sheets

- Bringing together concepts from …
	- …**big data science** & **sparse data science**
	- …**computer science** & **computational science**
-
- - …**scientific machine learning** & **simulation-based science**
- Sensitivity/gradient information is a powerful ingredient; obtained via
	- **differentiable programming / simulators**
	- **general-purpose automatic differentiation (AD)**

Minitutorials during *SIAM Mathematics for Planet Earth 2024 https://github.com/DJ4Earth/MPE24*

