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Is Earth Science 
a Big Data 
Science?



Is Oceanography
a “big data” 
science?

Yes & No …



(colors refer to
depth ranges)

Observational sampling
coverage for ocean
temperature in the 
upper 2000 m
1950 – 2010
(mean ocean depth:
~ 3900 m)

Abraham et al., Rev. Geophys. (2013)

Wunsch (2016)

Oceanography: 
A sparse data 
problem …



Two incomplete
knowledge
reservoirs

an eclectic, patchy, heterogeneous 
observing system

numerical models
that require 
uncertain 
inputs





What is Data Assimilation / Inverse Modeling?

Kaminski et al., The Cryosphere (2015): 
“Ideally, …

– …all observational data streams are interpreted simultaneously,
– …with the process information provided by the model,
– …[which leads to] a consistent picture of the state of the system,
– …that balances all the observational constraints, 
– …taking into account all the respective uncertainty ranges.”



What is Data Assimilation / Inverse Modeling?

–
–
–
–
–

Penny et al., Front. Mar. Sci. (2019): 
 “DA allows information provided from observations to be propagated 
 in time and space to unobserved areas using the dynamical and
 physical constraints imposed by numerical models.”



Data Assimilation
and Inverse
Modeling 

The DA / inverse problem is 
learning from …

• a set of available (usually sparse, 
heterogeneous) observations 

• … AND known physics/dynamics,

• … by solving a gigantic least-squares 
model-data misfit minimization



“Data assimilation” is much more than its use in
    numerical weather prediction



What do we mean by 
“Learning”?
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Learn model parameters

Physical model has many 
empirical parameters:
• constitutive laws
• subgrid-scale 

parameterization schemes
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Learn model parameters

Physical model has many 
empirical parameters:
• constitutive laws
• subgrid-scale 

parameterization schemes

parameter estimation 
using observations is 
essential
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is replaced by neural network

NN is trained on high-
fidelity simulation 
data which resolve 
scales to be 
parameterized
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Learn surrogate (e.g., NN) of model’s parameterization scheme

Toms et al. (2020)

=

Parameterization scheme(s) 
is replaced by neural network

NN is trained on high-
fidelity simulation 
data which resolve 
scales to be 
parameterized

a priori / offline learning
Zanna & Bolton  (2021)
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Learn model initial conditions

state 
at

T = 0
FORECAST @ T > 0

Find best initial conditions 
that will produce optimal 
forecast …

The filtering 
problem of optimal 
estimation & control

Initialization for 
prediction/extrapolation 
as practiced in 
numerical weather 
prediction
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Learn model time-evolving state
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Find model inputs that 
produce the best dynamically 
consistent state

The smoothing 
problem of optimal 
estimation & control

State & parameter estimation 
for:
• Interpolation/reconstruction
• transient calibration
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Learn model boundary conditions

Observations of ocean 
interior, combined with 
global & local mass/tracer 
conservation enables …

…inversion for surface 
fluxes that are 
required to match 
interior observations

Example for CO2 air-sea fluxes
(similar for heat fluxes)

air-sea fluxes of CO2 inferred from interior measurements

SOCCOM



A key unifying computational framework of “learning from data”

Gradient-based optimization:

• inversion (physical models)
– seek uncertain input / 

control variables / 
parameters

• training (neural networks)
– seek uncertain weights of 

NN representation

Adjoint / backpropagation
essential tool for computing 
high-dimensional gradients!



Can we integrate the 
surrogate model training 

within full-model calibration

Full-model 
learning



https://DJ4Earth.github.io

NSF CSSI: DJ4Earth 
Convergence of Bayesian inverse 

methods and scientific machine learning 
through universal differentiable programming



An end-to-end adjoint enables full-model calibration & initialization

Initial
cond.

Surface boundary condition / air-sea flux param.

Dynamical core

surrogate
model 1 … …surrogate

model i
surrogate
model n

Here: use of full-model differentiable programming to
• replace parts of model by appropriate surrogates
• use all available observations to train/calibrate all uncertain variables
• combines inverse modeling and ML in end-to-end learning

relies on general-purpose automatic differentiation (AD)



Since 2023 the idea of differentiable programming has taken off …
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Since 2023 the idea of differentiable programming has taken off …



Why Julia?

1/ Building on Climate 
Modeling Alliance (CliMA)

2/ Serious efforts in AD,  
differentiable programming

3/ Harness next-gen. 
compute architecture



● Finite volume, rotating, stratified fluids 
model for geophysical fluid dynamics (GFD).

● Written from scratch in Julia
● Multiple simulation options.
● GPU and CPU via kernel abstractions
● Parallelize using MPI.jl and multi-threading

https://github.com/clima/Oceananigans.jl 

ClimaOcean.jl: 
Ocean model component of the Climate Model Alliance (CliMA) model  



Differentiable programming for full-model / end-to-end learning

Differentiating GPU-enabled ocean model 
in Julia via the AD tool Enzyme.jl 

Oceananigans.jl 
(Silvestri et al., arXiv, 2023, 2024)

Moses, Churavy, et al., SC’21



Slide on Enzyme …
         Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

• Derivatives are ubiquitous in machine learning (training neural 
networks, Bayesian inference), scientific computing (uncertainty 
quantification, simulation)


• Enzyme synthesizes derivatives of arbitrary code within the compiler

• Differentiate code in any LLVM-based language (C/C++, Julia, 

Rust, Swift, Fortran, Python, etc) without rewriting it!

• Operating after and alongside program optimization generates 

asymptotically and empirically faster derivatives

• First automatic differentiation tool to handle arbitrary GPU kernels


• Best student paper @SC’22, SC’21, spotlight @NeurIPS’20; 
awarded multi-year DOE grant with LLNL

 X

from Comrade: High Performance Black-Hole Imaging 
JuliaCon 2022, Paul Tiede (Harvard)

from Efficient Differentiation of Pixel Reconstruction Filters for Path-Space 
Differentiable Rendering, SIGGRAPH Asia 2022, Zihan Yu et al

>100x speedup! 
 
Prior: 
  5 days (cluster) 

Enzyme-Based:

 1 hour (laptop)

Target Reconstruction

• Used by Harvard, Facebook, AMD, ANL, UT Austin, NASA, Dartmouth, CU Boulder, TU Munich, 
and startups for climate simulation, material science, ML, and more!

Enzyme: Fast, Parallel, and Rewrite-Free Derivatives

W. Moses V. Churavy

M. Schanen S H K Narayanan



Three initial Earth system applications

Ocean Sea ice Ice sheets

• Bringing together concepts from …
– …big data science   &   sparse data science
– …computer science  &  computational science
– …scientific machine learning &  simulation-based science

• Sensitivity/gradient information is a powerful ingredient; obtained via
– differentiable programming / simulators
– general-purpose automatic differentiation (AD)

S. Williamson         J. Kump             N. Loose           S. Silvestri         G. Wagner             C. Hill            M. Morlighem        C. Gong



Minitutorials during SIAM Mathematics for Planet Earth 2024
https://github.com/DJ4Earth/MPE24


