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Introduction

e Deep ocean convection sites are very localized in space:

e Labrador Sea

e Greenland Sea

e Western Mediterranean
o Weddell sea

e Control deep water formation rate

e Plays a key role in large scale ocean circulation, e.g. the AMOC

Figure 1: Schematic of AMOC (Crivalleri, 2018).
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Diffusion

e 'Traditional’ vertical mixing schemes are based on down-gradient formulation
W' = —K.0,¥ (1)

— Local approach, limited capabilities for convective events
(Deardorff, 1966; Schmitt, 2007)
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Introduction

e 'Traditional’ vertical mixing schemes are based on down-gradient formulation

) WV = —K.0,¥ (1)
Diffusion

ol =4 — Local approach, limited capabilities for convective events
(Deardorff, 1966; Schmitt, 2007)

e Eddy-Diffusivity-Mass-Flux (EDMF) param. have shown better capabilities
(e.g. Hourdin et al., 2002; Soares et al., 2004; Suselj et al., 2019; Giordani et al., 2020):

W = —K.0,¥ —a,w,(¥, — ¥) (2)
dif f. mass flux

e Accounts for non-local transport associated with coherent structures
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Outline

Stochastic approach: The Location Uncertainty
e Free convection Large Eddy Simulation (LES)

e A 1D vertical application: The temperature equation

A 3D application: The stochastic quasi-nonhydrostatic (SQ-NH) momentum equation

Conclusions and discussion
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

The stochastic Lagrangian particle trajectory X is defined as:

dXt = U(Xt,t)dt+U(Xt,t)dBt (3)
~— ~—
=X1ac—Xt resolved uncertainties
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

The stochastic Lagrangian particle trajectory X is defined as

= U(Xt, t)dt + O'(Xt, t)dBt

dX,;
N
=X1ac—Xt

TV
resolved uncertainties

Through stochastic calculus (I1t6-Wentzell),
the stochastic transport operator I, for a stochastic (semi-martingal) process ¢ is defined as:

to. ad
Sto- adv sto. diff.

J/

1
Dy & dsq + (u— 2V-a+aT(V~a)> -V th+0'dBt-Vq—§V- (aVq)dt
v | —

time increment ~
u*

modified adv
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

Recent generalization to compressible Navier—Stokes equations (Tissot et al., 2022)

By accounting for source terms in budget equation

a /Q o= /Q , (@t +Q, -aB) (5)

we arrived at the generalized Stochastic Reynolds Transport Theorem (SRTT):

1
dtq+ V . <<(’U, — §V . a)dt+ O'tdBt> q>

V- (0:Q,)dt — %V - (aVq)dt = Qdt + Q,, - dB; (6)
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

Transport equation for temperature T is obtained from conservation of total energy (i.e. SRTT(pE))
L2
pB=p e+ Sl +g2). (7)
with e = % the internal energy of the system, leading to:

thT +Ap+ Ay =P+ P+ D+ DotV + V, (8)

e Ap: Work of stochastic heat fluxes on stochastic flow e D;: 'Resolved’ drift work

e A,: Covariance of stochastic pressure D, 'Stochastic’ drift work

e P;: 'Resolved’ Compression/dilation effects

Vi: Viscous contribution

e P,: 'Stochastic’ Compression/dilation effects

V. Viscous contribution

Drift works Dy and D, can be related to baropycnal work present in compressible Large Eddy Simulation (Aluie, 2013).

— Recover stochastic incompressible NS and HPE through low Mach and Boussinesq approximations, respectively,
with possible intermediate levels of approximation.
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Free convection LES

Idealized Large Eddy Simulation (LES) of free convection with CROCO (Debreu et al., 2012)

e Physics:
e N2=2x10"6s2
® Qnet =500 W m—2
e 3 days long run
e Linear EOS: p = po(1 — arT)
e No rotation: f =0

o Numerics:
e Domain size: 1 km x 1 km x 500m
Isotropic 10 m resolution
doubly periodic
Non-hydrostatic, non-Boussinesq (NBQ; Auclaire et al., 2018)
WENOS5 advective scheme, but C2 for vert. adv. of temp.

Figure 2: Snapshot after 72 hours
'Local’ EVD for static instabilities
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https://croco-ocean.gitlabpages.inria.fr/croco_doc/index.html
http://ocean.fsu.edu/~qjamet/share/figures/convection/3D_plot_Temp_WENO5_NBQ_3days_N2_1e-6.mp4

A 1D vertical application:
The temperature equation
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A 1D vertical application (temperature equation)

Deterministic case
In our doubly periodic setting, horizontally averaged temperature equation reduces to

0T = =0, (WT" + wligs) (9)
then o = -
T =T"— At 0. (WT + wlys) (10)
=10 min
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A 1D vertical application (temperature equation)

Stochastic case
In LU, transport equation for temperature reads:

- s e | -
AT = —(w* — w)d.Tdt — edBP0,T + 50:(a::0:T)dt + others (11)
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A 1D vertical application (temperature equation)

Stochastic case
In LU, transport equation for temperature reads:

- s e | -
AT = —(w* — w)d.Tdt — edBP0,T + 50:(a::0:T)dt + others (11)

Stochastic transport of T

N

T =T" — At RHS4, (12)

with:
e stochastic vert. adv. (blue)

e modified vert. adv + vert. diff (red)
— both contribute equally

e At =28h

e Deterministic estimates
based on time averaged w ant T (gray)
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A 3D application:
The stochastic quasi-nonhydrostatic (SQ-NH) momentum equation
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Vertical mixing closure scheme are 1D vertical scheme, i.e. no horizontal interactions between grid cells.
— But kilometric-resolution simulations at basin/global scales are now emerging
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Obj. 1: Re-introduce vertical dynamics without a full Non-Hydrostatic model
(e.g. Klingbeil & Burchard, 2013; Garreau, 2021)

Obj. 2: Use stochastic modelling
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Inspired by direct non-hydrostatic pressure correction method
of Klingbeil & Burchard (2013) and Garreau (2021):

1

ou+ V. (uu) — fo = —p—@m (p+ )+ Dy (13a)
0
1

O+ V. (uwv) + fu= —p—@y P+ )+Dy (13b)
0
1

=——0.(p+ )dt—bdt (13¢)
Po

Vertical velocities are diagnostic through continuity

w(z) = —/ (Opu + Oyv)d2’, (14)
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Inspired by direct non-hydrostatic pressure correction method
of Klingbeil & Burchard (2013) and Garreau (2021):

1
ou+ V. (uu) — fo = —p—@m (p+ pnn) + Du (13a)
0
1
O+ V. (uv) + fu = —p—@y (P +Pnn) + Dy (13b)
0
1 1 1
(~3V+@) Vwdt = 5V - (@Vw)dt = 0. (p+ pu) dt — b (13¢)
0

Vertical velocities are diagnostic through continuity

n
w(z) = — / (Dot + Dy0)d, (14)
—H
Purely isotropic, homogeneous horizontal noise:
1 1
~(5V-a) Vudt - 5V - (@Vw)dt - %V%w (15)
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Figure 3: KE power spectra (left) and PDF of vertical velocities (right) for the reference NBQ and the stochastic
quasi-nonhydrostatic SQ-NH simulations.
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Conclusions

e Formalized stochastic compressible Navier—Stokes equations under Location Uncertainty
(Tissot et al,, 2022)

e Preliminary results in a 1D vertical application for the temperature equation
and a in 3D application for momentum equation

e Implementation of a stochastic non-hydrostatic pressure correction in CROCO
(Jamet et al., 2022)
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Conclusions

e Formalized stochastic compressible Navier—Stokes equations under Location Uncertainty
(Tissot et al,, 2022)

e Preliminary results in a 1D vertical application for the temperature equation
and a in 3D application for momentum equation

e Implementation of a stochastic non-hydrostatic pressure correction in CROCO
(Jamet et al., 2022)

+ Highlight the potential of stochastic modeling for penetrative convection
in the 1D vertical application

+ Partially recover spatial organization of convective plumes in the 3D application
(but large scale energy is still missing ...)

— stochastic NH pressure correction inhibits penetrative convection :/
(similar in the deterministic case of Garreau (2021))
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Thank you!
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Supplementary
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Figure 4. Vertical temperature fluxes (left), and vertical profile of temperature (right) after 3 days of simulation.
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Supplementary

Stochastic case
Noise construction from LES numerical simulations:

odBy(z,y,,z,t) = Z (z,t), (x y)dB(n) (16)

n
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Supplementary

Noise structure:
Horizontally homogeneous, isotropic and white noise — random plane waves

odBf = V46 (17)

with
0=>" (e%ik(”)'x dB,ﬁ’”) * F(2,1). (18)

n
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Supplementary

Noise structure:
Horizontally homogeneous, isotropic and white noise — random plane waves

odBf = V46 (17)

with .
=3 (62’”“(")'" dB,ﬁ’”) x F(2,1). (18)
a(z,t) =00 ; —(§V -a) - Vwdt — §V - (aVw)dt — ?Vhw (19)
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