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Introduction

Figure 1: Schematic of AMOC (Crivalleri, 2018).

• Deep ocean convection sites are very localized in space:

• Labrador Sea
• Greenland Sea
• Western Mediterranean
• Weddell sea

• Control deep water formation rate

• Plays a key role in large scale ocean circulation, e.g. the AMOC
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Introduction

• ’Traditional’ vertical mixing schemes are based on down-gradient formulation

w′Ψ′ = −Kz∂zΨ (1)

→ Local approach, limited capabilities for convective events
(Deardorff, 1966; Schmitt, 2007)

• Eddy-Diffusivity-Mass-Flux (EDMF) param. have shown better capabilities
(e.g. Hourdin et al., 2002; Soares et al., 2004; Suselj et al., 2019; Giordani et al., 2020):

w′Ψ′ = −Kz∂zΨ︸ ︷︷ ︸
diff.

−apwp(Ψp −Ψ)︸ ︷︷ ︸
mass flux

(2)

• Accounts for non-local transport associated with coherent structures
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Outline

• Stochastic approach: The Location Uncertainty

• Free convection Large Eddy Simulation (LES)

• A 1D vertical application: The temperature equation

• A 3D application: The stochastic quasi-nonhydrostatic (SQ-NH) momentum equation

• Conclusions and discussion
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

The stochastic Lagrangian particle trajectory Xt is defined as:

dXt︸︷︷︸
=Xt+dt−Xt

= u(Xt, t)dt︸ ︷︷ ︸
resolved

+σ(Xt, t)dBt︸ ︷︷ ︸
uncertainties

(3)

Through stochastic calculus (Itô-Wentzell),
the stochastic transport operator Dt for a stochastic (semi-martingal) process q is defined as:

Dtq ≜ dtq︸︷︷︸
time increment

+

(
u− 1

2
∇ · a+ σT (∇ · σ)

)
︸ ︷︷ ︸

u⋆

·∇

 qdt

︸ ︷︷ ︸
modified adv

+σdBt · ∇q︸ ︷︷ ︸
sto. adv

− 1

2
∇ · (a∇q) dt︸ ︷︷ ︸

sto. diff.

(4)
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

Recent generalization to compressible Navier–Stokes equations (Tissot et al., 2022)

By accounting for source terms in budget equation

d

∫
Ω(t)

qdx =

∫
Ω(t)

(Qtdt+Qσ · dBt) dx. (5)

we arrived at the generalized Stochastic Reynolds Transport Theorem (SRTT):

dtq +∇ ·
((

(u− 1

2
∇ · a)dt+ σtdBt

)
q

)
+∇ · (σtQσ)dt−

1

2
∇ · (a∇q)dt = Qtdt+Qσ · dBt (6)
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Location Uncertainty (Mémin, 2014; Resseguier et al., 2017)

Transport equation for temperature T is obtained from conservation of total energy (i.e. SRTT(ρE))

ρE = ρ

(
e+

1

2
||u||2 + gz

)
, (7)

with e = T
γ the internal energy of the system, leading to:

ρ

γ
DtT +AT +Au = Pt + Pσ +Dt +Dσ+Vt + Vσ (8)

• AT : Work of stochastic heat fluxes on stochastic flow

• Au: Covariance of stochastic pressure

• Pt: ’Resolved’ Compression/dilation effects

• Pσ: ’Stochastic’ Compression/dilation effects

• Dt: ’Resolved’ drift work

• Dσ: ’Stochastic’ drift work

• Vt: Viscous contribution

• Vσ: Viscous contribution

Drift works Dt and Dσ can be related to baropycnal work present in compressible Large Eddy Simulation (Aluie, 2013).

→ Recover stochastic incompressible NS and HPE through low Mach and Boussinesq approximations, respectively,
with possible intermediate levels of approximation.
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Free convection LES

Idealized Large Eddy Simulation (LES) of free convection with CROCO (Debreu et al., 2012)

Figure 2: Snapshot after 72 hours

• Physics:
• N2 = 2× 10−6 s−2

• Qnet = 500 W m−2

• 3 days long run
• Linear EOS: ρ = ρ0(1− αTT )
• No rotation: f = 0

• Numerics:
• Domain size: 1 km x 1 km x 500m
• Isotropic 10 m resolution
• doubly periodic
• Non-hydrostatic, non-Boussinesq (NBQ; Auclaire et al., 2018)
• WENO5 advective scheme, but C2 for vert. adv. of temp.
• ’Local’ EVD for static instabilities
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https://croco-ocean.gitlabpages.inria.fr/croco_doc/index.html
http://ocean.fsu.edu/~qjamet/share/figures/convection/3D_plot_Temp_WENO5_NBQ_3days_N2_1e-6.mp4


...

A 1D vertical application:
The temperature equation
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A 1D vertical application (temperature equation)

Deterministic case
In our doubly periodic setting, horizontally averaged temperature equation reduces to

∂tT = −∂z
(
w′T ′ + wTsgs

)
(9)

then
T
n+1

= T
n − ∆t︸︷︷︸

=10 min

∂z
(
w′T ′ + wTsgs

)n
(10)
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A 1D vertical application (temperature equation)

Stochastic case
In LU, transport equation for temperature reads:

dtT = −(w∗ − w)∂zTdt− σdB
(z)
t ∂zT +

1

2
∂z(azz∂zT )dt+ others (11)

Stochastic transport of T :

T
n+1

= T
n −∆t RHSsto (12)

with:

• stochastic vert. adv. (blue)

• modified vert. adv + vert. diff (red)
→ both contribute equally

• ∆t = 8h

• Deterministic estimates
based on time averaged w ant T (gray)
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...

A 3D application:
The stochastic quasi-nonhydrostatic (SQ-NH) momentum equation
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Vertical mixing closure scheme are 1D vertical scheme, i.e. no horizontal interactions between grid cells.
→ But kilometric-resolution simulations at basin/global scales are now emerging
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Obj. 1: Re-introduce vertical dynamics without a full Non-Hydrostatic model
(e.g. Klingbeil & Burchard, 2013; Garreau, 2021)

Obj. 2: Use stochastic modelling
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Inspired by direct non-hydrostatic pressure correction method
of Klingbeil & Burchard (2013) and Garreau (2021):

∂tu+∇. (uu)− fv = − 1

ρ0
∂x (p+

pnh

) +Du (13a)

∂tv +∇. (uv) + fu = − 1

ρ0
∂y (p+

pnh

) +Dv (13b)

(−1

2
∇ · a) ·∇wdt− 1

2
∇ · (a∇w)dt

= − 1

ρ0
∂z (p+

pnh

) dt− bdt (13c)

Vertical velocities are diagnostic through continuity

w(z) = −
∫ η

−H
(∂xu+ ∂yv)dz

′, (14)

Purely isotropic, homogeneous horizontal noise:

−(
1

2
∇ · a) ·∇wdt− 1

2
∇ · (a∇w)dt → νh

2
∇2

hw (15)
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Stochastic quasi-nonhydrostatic (SQ-NH) model

Figure 3: KE power spectra (left) and PDF of vertical velocities (right) for the reference NBQ and the stochastic
quasi-nonhydrostatic SQ-NH simulations.
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Conclusions

• Formalized stochastic compressible Navier–Stokes equations under Location Uncertainty
(Tissot et al., 2022)

• Preliminary results in a 1D vertical application for the temperature equation
and a in 3D application for momentum equation

• Implementation of a stochastic non-hydrostatic pressure correction in CROCO
(Jamet et al., 2022)

+ Highlight the potential of stochastic modeling for penetrative convection
in the 1D vertical application

+ Partially recover spatial organization of convective plumes in the 3D application
(but large scale energy is still missing ...)

− stochastic NH pressure correction inhibits penetrative convection :/
(similar in the deterministic case of Garreau (2021))
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.

Thank you!
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Supplementary
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Figure 4: Vertical temperature fluxes (left), and vertical profile of temperature (right) after 3 days of simulation.
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Supplementary

Stochastic case
Noise construction from LES numerical simulations:

σdBt(x, y, , z, t) =
∑
n

b̂n(z, t)ϕn(x, y)dB
(n)
t (16)
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Supplementary

Noise structure:
Horizontally homogeneous, isotropic and white noise → random plane waves

σdBH
t = ∇⊥

Hθ (17)

with
θ =

∑
n

(
e2πik

(n)·x dB
(n)
t

)
∗ F (z, t). (18)

a(x, t) = σσ
T

; −(
1

2
∇ · a) ·∇wdt− 1

2
∇ · (a∇w)dt → νh

2
∇2

hw (19)
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