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Online particle advection has some advantages over
offline advection

» Offline particle advection typically involves
* saving time-averaged velocities
* using them to advect virtual particles

* YOu can save more output to get more accurate
trajectories, but this requires a lot of storage

* Online particle advection avoids this problem, because
the particles are advected as part of the model run



In a model where the grid is stationary (not true in MOMG6)

u,v,w are interpolated within each gria cell
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* u Is Interpolated linearly in the x-direction, and is constant in y, z



In a model where the grid is stationary (not true in MOMG6)

WtOpAtOp

u,v,w are interpolated within each gria cell

uleftAleft

Most commonly,

Lan (no velocity)
* u Is Interpolated linearly in the x-direction, and is constant in y, z

* VIS Interpolated linearly in the y-direction, and Is constant in X, Z

* W IS Interpolated linearly in the z-direction, and Is constant in x, y



In a model where the grid is stationary (not true in MOMG6)
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u, v, w are interpolated within each grid cell top
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Most commonly,
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* u Is Interpolated linearly in the x-direction, and is constant in y, z

* VIS Interpolated linearly in the y-direction, and Is constant in X, Z

* W IS Interpolated linearly in the z-direction, and Is constant in x, y

This Is a "mass conserving” scheme.



Defining a “mass conserving” scheme.
If
* u Is interpolated linearly in the x-direction, and is constant in y, 7
* vV is interpolated linearly in the y-direction, and is constant in X, Z
* W Is Iinterpolated linearly in the z-direction, and is constant in x, vy
In the ocean model, inputs and
outputs match for each grid cell
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Defining a “mass conserving” scheme.
If

* u IS interpolated linearly in the x-direction, and is constant in y, 7
* vV is interpolated linearly in the y-direction, and is constant in X, Z

* W Is Iinterpolated linearly in the z-direction, and is constant in x, vy

In the ocean model, inputs and

outputs match for each grid cell Subdividing the grid cell does not

create convergence of mass
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Example of a scheme that doesn’t conserve mass

* u Is interpolated linearly in the x-direction, is constant in y and
varies linearly in Z

* W IS Interpolated linearly in the z-direction, and is constant in x, y

(Perhaps with the motivation of having «# and v decrease towards the ocean floor)

In the ocean model, inputs and Convergences appear when we
outputs match for each grid cell subdivide our grid cells
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Online in MOMG6, we cannot use a traditional scheme
w does not exist

During the dynamics step,

the layers move together with
the fluid

Order of operations usually
proceeds like this:

Initial State ~ 4 Diabatic processes
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Online in MOM®6, we cannot use a traditional scheme

w does not exist _
Z egﬂd 7 Remap

During the dynamics step,

the layers move together with
the fluid

Order of operations usually
proceeds like this:

Initial State > 4 Diabatic processe Resolved

SGS




Online in MOM®6, we cannot use a traditional scheme

Regrid . Remap

That’s a lot of steps! But let’s ;
first just focus on the . y T
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Particle advection during dynamics step

- Initial >4 After advection

Particles are advected horizontally and maintain their fractional
position within each layer



Mass conservation In this new setup

* u Is Interpolated linearly in the x-direction, and is constant in y, z

* VIS Interpolated linearly in the y-direction, and Is constant in x, 7

* Particle maintains its fractional position in the cell

Subdividing the grid cell does not
create convergence of mass, because
“center” interface moves half the
distance of top interface

Volume is conserved because top
Interface moves

MleftAleft
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Our code has 2 modes

- Initial >4 After advection

X

Advect particles with resolved velocities

Advect particles with residual velocities



Advection with resolved velocities only

o After advection by Particles location frozen
yi Initial ya resolved vels - 4 during subgrid step

Particles are advected horizontally using the resolved velocities

Particles are frozen in depth and time during the part of the
timestep where sub grid scale velocities are used



Advection with full velocity field

s After advection by
vi Initial i total velocity

uh

In this case, we actually use ___ to advect the particles

h



Examples in adiabatic
“stacked shallow water”
channel 2 oo
First examples use 1 degree resolution and " o0z-
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Examples in adiabatic “stacked shallow water” channel

First examples use 1 degree resolution and k,,,, = 83000m*/s

In adiabatic mode, there are no buoyancy fluxes, so the residual circulation
must be zero everywhere
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Online vs offline trajecories in adiabatic channel (resolved)

Online particles Offline particles
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diabatic channel (residual)

Offline particles
residual zonal velocity

jecories in a

Online vs offline tra

Online particles
residual zonal velocity
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As expected, no flow In

meridional or z directions

Particle trajectories match
very closely in the zonal

direction
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Examples in adiabatic “stacked shallow water” channel
Now we go to 0.1 degree resolution and switch off the eddy parameterization
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Offline trajectories are sensitive to output frequency

,o¢lect online trajectories ,Select offline trajectories
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Offline trajectories are sensitive to output frequency

OSelect online trajectories
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Conclusions

* The traditional method for online particle advection will not work In
models with a Lagrangian vertical coordinate

 The new method presented here conserves mass

* We can advect particles using both the resolved and the residual
velocity field (though not at the same time)

* Online methods generally match offline methods at coarse resolution

* Online methods should have less spurious vertical movement for high
resolution
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