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Outline

1. What are models doing well?
• Models produce multidecadal modes with reasonably realistic spatial 

patterns and impacts 
2. Where can models improve?
• Observed variance is an outlier, relative to model ensemble spread
• This is an error, caused by a S/N ratio that is too low in models

3. How can the S/N ratio be improved? What could rectifying 
this error teach us?
• Potential sources of the S/N error
• Implications of the S/N error



Models simulate internal patterns of variability

(Murphy et al. 2021)

• Models produce 
multidecadal modes 
with reasonably 
realistic spatial 
patterns and impacts 
• AMV
• NAO
• PDO

• These internal modes 
produce have impacts 
similar to observations
• MDR VWS; Sahel 

precipitation
• Euro. Precipitation
• SW US Precipitation
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Models underestimate the amplitude of variability

• Observed decadal 
variances are 
consistently on the 
edge/outside of 
ensemble spread
• If independent, this is 

an unlikely result
• Examples:

• AMV
• Sahel precipitation
• Atlantic vertical wind 

shear
• NAO/N. Euro. precip.
• Western US 

precipitation 

(Murphy et al. 2017)
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Models underestimate the amplitude of variability

• Observed decadal 
variances are 
consistently on the 
edge/outside of 
ensemble spread
• If independent, this is 

an unlikely result
• Examples:

• AMV
• Sahel precipitation
• Atlantic vertical wind 

shear
• NAO/N. Euro. precip.
• Western US 

precipitation 

(Lehner et al. 2018)



Large ensembles of climate models

• Either we live at the edge of many pseudo-independent 
distributions OR there is a problem with models
• If there is a problem in models, either:

1. Models underestimate interval variability (ensemble spread 
is too small)

2. Models underestimate the response to external forcing 
(ensemble mean too weak)

• Use large ensembles of climate models to evaluate these 
possibilities



Ensemble means highly correlated with obs.

• Ensemble mean 
indices are surprisingly 
highly correlated with 
observations
• AMV (R2 ≈ 0.75)
• NAO (R2 ≈ 0.60)
• PDO (R2 ≈ 0.50)
• Still a role for internal 

variability!
• And these high 

correlations are 
unlikely from internal 
variability alone
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Correlations unlikely from internal variability alone
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Assorted evidence for the role of forcing

• Role of forcing increases 
as anthropogenic forcing 
increases (AMV, PDO, 
NAO)
• Correlation
• Variance

• Single-forcing (GHG, AER) 
runs have high correlations 
during appropriate time 
periods
• Ensemble mean spatial 

patterns bear strong 
similarity to observations 
(not always perfect)

1850/1920 – 2005
1950 - 2005

(Klavans et al. 2022)



The need for large ensembles

• These high correlations could 
only be unearthed with very 
large ensembles of climate 
models
• PDO, NAO, AMV, impacts
• More members to isolate NAO, 

fewer to isolate AMV
• Amplitude of the forced signal 

is too small, overwhelmed by 
internal noise

(Klavans et al. In Review)



The need for large ensembles

• Forced amplitude is so weak it 
was very easy to overlook
• Example using the PDO index:
• In a 40-member ensemble, the 

R2 from 1920 – 2005: 5%
• In a 472-member ensemble, the 

R2 from 1950 – 2005: 53%
• The externally forced signal to 

internally generated noise 
ratios in models is too weak

(Newman et al. 2016)



Aside: the signal-to-noise paradox

• What we’ve presented so far is 
a narrowing of the signal-to-
noise paradox (Eade et al. 
2014; Dunstone et al. 2016; 
Smith et al. 2020; and many 
others)
• Comparing initialized and 

uninitialized ensembles shows 
the error at decadal signal 
primarily associated with the 
forced signal (Klavans et al. 
2022)

(Scaife and Smith 2018)



The signal-to-noise ratio in models is too low

• We can estimate the 
signal-to-noise ratio in 
models and observations
• Large ensembles 

• Ensemble mean / internal 
variability

• Observations
• 𝑂𝐵𝑆 = 	𝛽!𝐸𝑀 + 	𝜀

• Could observed internal 
variability be correlated 
with the forced signal by 
chance? Unlikely across 
many pseudo-
independent modes

(Chengfei He - does good work, go to his poster!) 



Summary

1. What are models doing well?
• Models produce multidecadal modes with reasonably realistic spatial 

patterns and impacts 
2. Where can models improve?
• Observed variance is an outlier, relative to model ensemble spread
• Ensemble mean is highly correlated with observations – but it’s 

amplitude is too weak
• The forced signal to internally generated noise ratio is too low in 

models
3. How can the S/N ratio be improved? What could rectifying 

this error teach us?



How can the S/N ratio be improved? 

• Some proposed 
causes of the S/N 
error:
• Air-sea coupling 

(Smirnov et al. 2015; 
Kim et al. 2018)
• Upper ocean damping 

(Murphy et al. 2021)
• Model resolution 

(Scaife et al. 2019)
• Ocean front resolution 

(Kirtman et al. 2017)

(Klavans et al. In Review)



What could rectifying this error teach us?

• Models may be 
underestimating climate 
risk while overestimating 
uncertainty
• Increasing the S/N ratio to 

match observations 
suggests that 
observations are an 
average response
• External forcing is 

predictable in the near-
term

(Klavans et al. In Review)



What could rectifying this error teach us?

• Paleoclimate: Is climate model 
response to solar/orbital forcing 
too weak? (Victoria Todd and Tim 
Shanahan)
• Internal variability: how does 

internal noise change when the 
signal increases? Some evidence 
signal and noise are additive 
• Until the S/N error in models is 

fixed, large ensembles are a 
required tool for understanding 
regional climate change



More slides!
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