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Overview

I will discuss the following topics
i Incompressible Dynamics (∼ ocean)
ii Compressible Dynamics (∼ atmosphere)
iii Singular Limits (relation between different equations)
iv Lessons learned

Focus on finite-dimensional setup and nonhydrostatic dynamics



Incompressible Dynamics: From Hydrostatic to Nonhydrostatic

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

Velocity field: v = (vh,w), horizontal velocity vh, vertical velocity w

∂tvh + ωz e⃗z × vh +
∇h|vh|2

2
+ w∂zvh +

1
ρ0

∇hp −Dvh = 0

∂zp = −ρg

∂tη + divh

∫ η

−B
v dz = 0

divh vh + ∂zw = 0

∂tC + div(Cv)− div(KC∇C) = 0
ρ = Feos(p,T ,S),
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This is the Hydrostatic Euler Equation.
How can we make it NonHydrostatic ?



From Hydrostatic to NonHydrostatic Euler Eq. - Two Routes

Route A to Nonhydrostatic Euler: add w-eq to hydrostatic eqs.

∂tvh + ωz e⃗z × vh + w∂zvh +∇h
(
p +

|vh|2

2
)
= 0,

∂tw + (v ,w) · ∇w + ∂zp = 0,

Route B to Nonhydrostatic Euler: 3D vector-invariant

∂tv + ω × v +∇
(
p + |v|2

2

)
= 0 (v, ω are 3D vector fields)

Route A: easy to implement, breaks beauty of Euler equation.
(no consistent vorticity eq., energetics presumably impossible...)
Route B challenge is discrete exterior product ω × v

Strategy: we go for Route B

1 Focus on inviscid case and get conservation properties
2 Incorporate dissipation via explicit dissipation, upwind-biased . . .



From Hydrostatic to NonHydrostatic Euler Eq. - Two Routes

Route A to Nonhydrostatic Euler: add w-eq to hydrostatic eqs.

∂tvh + ωz e⃗z × vh + w∂zvh +∇h
(
p +

|vh|2

2
)
= 0,

∂tw + (v ,w) · ∇w + ∂zp = 0,

Route B to Nonhydrostatic Euler: 3D vector-invariant

∂tv + ω × v +∇
(
p + |v|2

2

)
= 0 (v, ω are 3D vector fields)

Route A: easy to implement, breaks beauty of Euler equation.
(no consistent vorticity eq., energetics presumably impossible...)
Route B challenge is discrete exterior product ω × v

Strategy: we go for Route B

1 Focus on inviscid case and get conservation properties
2 Incorporate dissipation via explicit dissipation, upwind-biased . . .



Euler: Discrete Advection

Incompressible Euler Equations

∂tv + ω × v +∇
(
p + |v|2

2

)
= 0, divv = 0

Advection - Continuous Cross Product

horiz. v-equation: (ω × v)|h =

(
ωyvz − ωzvy
ωzvx − ωxvz

)
,

vert. v-equation: (ω × v)|v = ωh · v⊥
h =

(
ωxvy − ωyvx

)
.

blue/Hydrostatic: Cross-product terms with vertical vorticity ωz

red/Nonhydrostatic:Cross-product terms with horiz. vorticity ωh

→ we have blue we need red
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Euler: Discrete Advection

We need 3D vorticity vector (ωh, ωz) and construct missing ωh via
Stokes Theorem

Horizontal component of vorticity vector - continuous

ωh := curlhv =

(
ωx
ωy

)
=

(
∂yvz − ∂zvy
∂zvx − ∂xvz

)

Three Observations
1 Prismatic grid: 2D horizontal × 1D vertical
2 Dual prism is shifted horizontally and vertically
3 Vertical faces are rectangles !
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Vorticity Vector for Discrete Advection

Horizontal component of vorticity vector ω∂P̂ via Stokes

ωh //︸ ︷︷ ︸
by Stokes

curlhu∂P := wK ,k+1/2 + ve,k − wL,k+1/2 − ve,k+1

This defines
discrete 3D curl-operator: curlu∂P = (curlhu∂P ,curlv u∂P)

vorticity vector at faces of dual prism ω∂P̂ := (ωh, ωv )



Discrete Advection - Vorticity Flux via Discrete Cross Product

 ωyvz − ωzvy
ωzvx − ωxvz
ωyvy − ωyvx

⇝ ω∂P̂ ⋆ u∂P :=

(
P̂†

h(ωzP̂hv)− PzPT (wP̃hωh)

P̃hωh · PPT
z v

)

the secret sauce

P, P̂, P̃ are Hilbert space compatible reconstructions



Vorticity Vector for Discrete Advection

Kernel of Differential Operators

i gradp = 0 if and only if p is constant

ii curl v = 0 if and only if v = grad p

iii div v = 0 if and only if v = curlT u.

Discrete Biot-Savart:
From given ω ∈ HV̂ the velocity u∂P ∈ H∂P with divMu∂P = 0, is
recovered by solving Laplace equation

divMgrad u∂P = curlTω.



Numerical Disgression I: Virtual Finite-Elements - Local Approximation Space

Cont. Velocity Space & Discrete Degrees of Freedom on Prism Q

• F(Q) := {f ∈ Hdiv (Q) ∩ Hrot(Q) : div f ∈ P0(Q), curl f = 0,
f |e · ne ∈ P0(Q) ∀e ∈ ∂Q},

• dofF(Q)(f ) := Πf :=
1
|e|

∫
e

f · ne ds, ∀e ∈ ∂Q.

Theorem
Discrete DoF’s above are unisolvent, i.e. they characterize uniquely
the respective continuous virtual element space.
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Numerical Disgression II: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions of disc. DoF via local PDEs

Given discrete velocity dof’s ve ∈ ∂Q. Define continuous
function ṽ := Pv on Q as solution of local div-curl problem

divṽ = divv , on Q,
curl ṽ = 0, on Q,
ṽ · ne = ve on ∂Q.

Scalar Product on Discrete Velocity Space in Terms of
Reconstructions〈

u, v
〉
F(Q)

:=

∫
Q
Pu · Pv dx∫

Ω
Pu · Pv dx =

∑
Q∈C

|Q|PuQ · PvQ,
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Numerical Disgression III: Virtual Finite-Elements - Scalar Products &

Reconstructions

Pressure & Vorticity

For pressure and vorticity spaces similar scalar products via
reconstructions via local div-curl PDEs.

Fundamental Lemma on Reconstructions

Let P : ve → Pv ∈ F(Q) be a reconstruction such that
P is the right-inverse of projection Πf := 1

|e|
∫

e f · ne d

P is first-order accurate

P commutes with continuous differential operators grad ,div , curl

Reconstructed functions are orthogonal to linear polynomials on
Q with zero mean

P has a local stencil

Then it holds
∫

Q Pv · eidx =
∑

e∈∂Q ve|e|(xe − xQ) · ei .

(Analogous results for P̂, P̃)
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Numerical Disgression III: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions

Div-Curl- PDE are actually never solved.

Reconstructions have an explicit & computable form.

We need three Reconstructions

P: face dof → inside primal 3D prism
P̂: face dof → inside 3D dual prism
P̃h: edge dof → inside 2D primal cell
M := PTP

End of Numerical Disgression - Back to Euler Equations



Euler Equations - Incompressible

Incompressible Euler

•
〈 d

dt
Mu∂P , ϕ

〉
H∂P

+
〈
ω∂P̂ ⋆ u∂P , ϕ

〉
H∂P

+
〈
Mgrad

(
p +

|Pu∂P |2R3

2
)
, ϕ

〉
H∂P

= 0, ∀ϕ ∈ H∂P ,

• divMu∂P = 0.

Pressure Recovery

Pressure is recovered from u∂P ∈ H∂P by solving Laplace equation

divMgradp = −divMgrad
( |P3u∂P |2R3

2

)
− divL(ω∂P̂ ,u∂P)
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Euler Equations - Incompressible

Theorem (Well-Posedness of Semi-Discrete Euler Equations)

Let a time interval [0,T ] and initial conditions u0 ∈ Hdiv
∂P be given.

Then there exist for t ∈ [0,T ] a unique solution u∂P(t) ∈ H∂P of the
discrete Euler equations.

(Proof by Picard’s theorem for ODE for short time and extension to
long time via energy conservation.)

Well-Posedness of Semi-Discrete Navier-Stokes
Proof translates to Navier-Stokes equations,
with dissipation given by D(v) := curlT (νcurlu∂P).
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Incompressible Euler: Invariants I

Linear Momentum

Let u∂P ∈ HdivM
∂P be a solution of the Euler equation. Then the linear

momentum I :=
〈
PTPu∂P ,1

〉
HP

satisfies
d
dt

I = 0.

Angular Momentum L := x⃗ × u⃗

Question: How to define L := x⃗ × u⃗ for staggered u⃗ = (vh,w) ?

Observation: Vector product ω⃗ × u⃗ ∼ ω∂P̂ ⋆ u∂P

Angular Momentum - Definition and Conservation

Define discrete angular momentum:

ℓ(u∂P) := x⃗ ⋆ u∂P ,

where x⃗ is coordinate vector of the position of vorticity at dual prism
faces. Then

d
dt

〈
ℓ(u∂P),1

〉
= 0
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Incompressible Euler: Invariants II

Theorem (Energy Conservation)

The solution u∂P(t) ∈ Hdiv
∂P of the discrete incompressible Euler

equations conserves kinetic energy:

d
dt

Ekin(t) = 0, Ekin(t) := ||P3u∂P(t)2||HP

2D: Energy and enstrophy conservation.

Helicity: Inner Product of Velocity & Vorticity

H :=
∫
Ω v · ω dx | H :=

〈
P̂v ωz ,1

〉
HV̂

+
〈
wP̃hωh,1

〉
HP

Theorem (Helicity Conservation)

The solution u∂Pk (t) ∈ Hdiv
∂P of the discrete 3D incompressible Euler

equations conserves helicity:

dtH = 0.

(Proof by combining equations for vorticity and velocity and suitable
test functions in discrete weak form.)
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Fully Discrete System

Time stepping - Implicit

〈M(un+1
∂P − un

∂P)

∆t
, ϕ

〉
H∂P

+
〈
ω

n+1/2
∂P̂

⋆ un+1/2
∂P , ϕ

〉
H∂P

+
〈
Mgrad

(
pn+1/2 +

|Pun+1/2
∂P |2R3

2
)
, ϕ

〉
H∂P

=
〈
f n+1/2, ϕ

〉
H∂P

,

divMun+1
∂P = 0,

where un+1/2
∂P := 1

2(u
n+1
∂P + un

∂P)



Well-Posedness of Discrete Euler Equation

Theorem
• Let ∆t > 0 be the time step size and u0

∂P inHdivM
∂P initial conditions.

Then a unique solution exists (un
∂P ,p

n) of incompressible Euler with
the following properties:

1 (un
∂P ,p

n) conserves global kinetic energy, Ekin(un
∂P) = Ekin(u0

∂P)

2 (un
∂P ,p

n) conserves linear momentum I(un
∂P) = I(u0

∂P) and
angular momentum ℓ(un

∂P) = ℓ(u0
∂P)

3 (un
∂P ,p

n) conserves vorticity
〈
ω∂P̂

n,1
〉
HV̂

=
〈
ω∂P̂

0,1
〉
HV̂

.

4 (un
∂P ,p

n) conserves helicity H(un
∂P) = H(u0

∂P)

5 (un
∂P ,p

n) is reversible in time

(Proof: Schauder fix point theorem, differentiability of mapping for
uniqueness. Conservation properties rely on implicit time stepping.)

Navier-Stokes Equations

Proof applies to Navier-Stokes, without conservation props.



Euler-Boussinesq Equations - Incompressible & Varying Density

Now allow the density to vary - but not to compress

Incompressible Euler-Boussinesq Equations

∂tv + ω × v +∇
(
p +

|v|2

2
)
= gρe⃗z , divv = 0

∂tρ+ div(ρv) = 0.

Euler-Boussinesq

•
〈 d

dt
Mu∂P , ϕ

〉
H∂P

+
〈
ω∂P̂ ⋆ u∂P , ϕ

〉
H∂P

+
〈
Mgrad

(
p +

|Pu∂P |2R3

2
)
, ϕ

〉
H∂P

=
〈
gρe⃗z , ϕ

〉
HP

• divMu∂P = 0,

•
〈
∂tρ, ψ

〉
HP

+
〈
div(PT (ρPv)), ψ

〉
HP

= 0.
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Euler Boussinesq Invariants

Theorem (Well-Posedness of Semi-Discrete Euler-Boussinesq)

i) A unique solution u∂P(t) ∈ Hdiv
∂P , ρ ∈ HP to discrete

Euler-Boussinesq equations exists
ii) and it has the following properties

Energy Conservation: The sum of kinetic and potential energy
is conserved

d
dt

(Ekin + Epot)(t) = 0, Epot := gρQw

Helicity Conservation The solution u∂Pk (t) ∈ Hdiv
∂P of the

discrete 3D incompressible Euler equations satisfies

dtH = F (Φ). (Φ geopotential)



New Invariant: Potential Vorticity (Mass Weighted )

PV - Continuous:

PV := ω · ∇ρ

PV - Discrete: Inner Product of ω and gradρ

PV(u∂P)|P̂ :=
〈
ωz P̂hgradρ,1

〉
H
∂P̂=

+
〈
ωh Dzρ,1

〉
H

∂P̂||

Potential Vorticity Conservation

Let u∂P ∈ HdivM
∂P be a solution of the Euler-Boussinesq

equations. Then
d
dt

〈
PV,1

〉
HP̂

= 0.

Proof by combining equations for vorticity and for density gradient.
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Well-Posedness of Discrete Euler-Boussinesq Equation

Theorem - Implicit Time stepping

Let ∆t > 0 be the time step size. Let initial conditions u∂P
0 ∈ HdivM

∂P
be given. Then there exists a unique solution (un

∂P ,p
n) of

Euler-Bousinesq with the following properties:

1 (un
∂P ,p

n) conserves global kinetic energy, Ekin(un
∂P) = Ekin(u0

∂P)

2 (un
∂P ,p

n) conserves linear momentum I(un
∂P) = I(u0

∂P)

3 (un
∂P ,p

n) conserves helicity H(un
∂P) = H(u0

∂P)

4 (un
∂P ,p

n) conserves the potential vorticity PV(un
∂P) = PV(u0

∂P)



Relation Hydrostatic & Nonhydrostatic: Hydrostatic Limit

Small Aspect Ratio ϵ

Thin domain: Ωϵ = [−1,1]2 × [−ϵ, ϵ] transform into Ω := [−1,1]3

Transformation:

vϵ(x , y , z, t) := v(x , y , ϵz, t), , pϵ(x , y , z, t) := p(x , y , ϵz, t)

wϵ(x , y , z, t) :=
1
ϵ

w(x , y , ϵz, t).

Scaled Euler Equations

∂tvϵ + (curlvϵ× vϵ)|h +∇h
|vϵ|2

2
+∇hpϵ = 0,

ϵ2
{
∂twϵ + (curlvϵ × vϵ)|v + ∂z

|vϵ|2

2

}
+ ∂zpϵ = 0,

div vϵ + ∂zwϵ = 0.



Relation Hydrostatic & Nonhydrostatic: Hydrostatic Limit

Scaled Euler Equations vϵ = (v1, v2, v3), vi = vi(x , y , z, t)

∂tvϵ + (curlvϵ × vϵ)|h +∇h
|vϵ|2

2
+∇hpϵ = 0,

ϵ2
{
∂twϵ + (curlvϵ × vϵ)|v + ∂z

|vϵ|2

2

}
+ ∂zpϵ = 0,

div vϵ + ∂zwϵ = 0.

Hydrostatic Euler Equations v = (v1, v2), vi = vi(x , y , z, t)

∂tv + (curlv × v)|h +∇h
|v|2

2
+∇hp = 0,

∂zp = 0,
div vh + ∂zw = 0.

What happens for ϵ→ 0 ?



Relation Hydrostatic & Nonhydrostatic: Discrete Hydrostatic Limit

Discrete Scaled Euler Equations

•
〈 d

dt
Mhv ϵ + ω∂P̂ ⋆ u∂P |nh

h +Mhgradn
(Enh

kin
2

+ pϵ
)
, ϕh

〉
HF

= 0,

•
〈
ϵ2
{

d
dt

w ϵ + ω∂P̂ ⋆ u∂P |nh
z + Dz

( |Pu∂P
ϵ|2

2
)}

+ Dzpϵ, ϕv
〉
HP

= 0,

• divhMhv ϵ + divv w ϵ = 0,

Discrete Hydrostatic Euler Equations

•
〈 d

dt
Mhv + ω∂P̂ ⋆ u∂P |hyd

h +Mhgradn
(
p +

Ehyd
kin
2

)
, ϕh

〉
HF

= 0,

•
〈
PzDzp, ϕv

〉
HP

= 0,

• divhMhv + divv w = 0,

What happens for ϵ→ 0 ?



Relation Hydrostatic & Nonhydrostatic: Discrete Hydrostatic Limit

Theorem
In the aspect ratio limit, ϵ→ 0,
the solution (unh

∂P ,p
nh) of the (nonhydrostatic) Euler equations

converges
to the solution (uhyd

∂P ,p
hdy ) of the hydrostatic Euler equations.

Proof

Consider equation for the difference δu := unh
∂P − uhyd

∂P .
Analyze difference of nonlinear terms

ω∂P̂ ⋆ u∂P |nh
h − ω∂P̂ ⋆ u∂P

hyd
h

wnhPhcurlhunh − whydPhDzunh

∼ curlhunh − Dzunh

Scalar product of difference equation with
δu and energy estimate
→ Horizontal curlh is crucial for estimate

Theorem is discrete version of PDE result by J. Li and E.S. Titi (2019)
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Discrete Primitive Equations: ICON-O

Let G = ∆ be a triangular grid.

Velocity :
〈 d

dt
Mhv , ϕ

〉
+
〈
P̂T [(f + ω)P̂v ], ϕ

〉
+
〈
PTQ(wDzPv), ϕ

〉
+
〈
Mgrad[

|Pv |2R3

2
], ϕ

〉
+
〈
PTPgrad(gη + phyd ), ϕ

〉
−
〈
Lv , ϕ

〉
=

〈
Fv , ϕ

〉
Incompress. :divhMhv + Dzw = 0

Free Surface :
〈∂η
∂t
, ψ

〉
+
〈
div[

k=Ntop∑
k=0

PT (∆zkPvk )], ψ
〉
= 0

Tracer :
〈∂C
∂t
, ψ

〉
−
〈
divupPT (CPv), ψ

〉
+
〈
LC, ψ

〉
=

〈
FC , ψ

〉
P. K. Formulation of an Unstructured Grid Model for Global Ocean Dynamics (J. Comp. Phys. 339 (2017))



Discrete Primitive Equations: ICON-O

Theorem

Let a vertical mixing scheme of PP-type be active.

Then the semi-discrete hydrostatic Boussinesq ICON-O equations
with a free surface have a unique solution, provided the forcing is
sufficiently “nice”.

Corollary
The same statement applies if the mesoscale eddy parametrization of
Gent-McWilliams-Redi is included and discretized by
structure-preserving numerics a.

a
P. K. A structure-preserving discretization of ocean parametrizations on unstructured grids (Ocean Modell.

(2018))



Compressible Euler Equations

Now allow the density to vary and to compress

Compressible Euler: Momentum vs Velocity

Momentum: ∂tρ+ div(ρv) = 0,

∂t(ρv) + ρ curl v × v + ρ∇
( |v|2

2 +Φ
)
+ vdiv(ρv) +∇p = 0,

∂(ρe) + div
(
v(ρe + p)

)
= 0,

Energy: ρe := |v|2
2 + cV T + ρΦ, EOS: p = ρRT .

Velocity: ∂tρ+ div(ρv) = 0,

∂tv + curl v × v +∇
( |v|2

2 +Φ
)
+ ∇p

ρ = 0,

∂(ρe) + div
(
v(ρe + p)

)
= 0,

We use velocity form in analogy with ICON-A.
Similar results for momentum form.



Compressible Euler Equations

Discrete Compressible Euler

•
〈 d

dt
Mu∂P , ϕ

〉
H∂P

+
〈
ω∂P̂ ⋆ u∂P +Mgrad

( |Pu∂P |2R3

2
)
, ϕ

〉
H∂P

+
〈
PT (

1
ρ
Pgradp)

)
, ϕ

〉
H∂P

=
〈
MgradΦ, ϕ

〉
H∂P

,

•
〈
∂tρ+ divup(PT (ρPu∂P), ψ

〉
HP

= 0,

•
〈
∂t(ρθ) + div(PT (ρθPu∂P), ψ

〉
HP

= 0,

Theorem (Well-Posedness of Compressible Euler Equations)

Let a time interval [0,T ] and initial conditions

u∂P(t = 0) = u0, and θ(t = 0) = θ0

ρ(t = 0) = ρ0 with ρ0 ≥ c > 0 be given.

Then there exist for t ∈ [0,T ] a unique solution u∂P(t) of the discrete
compressible Euler equations.

We need to assume upwind advection for ρ to avoid vacuum.



Compressible Euler - Invariants

Theorem
Solution u∂P(t) of discrete compressible Euler equations
satisfies

Energy Conservation: The sum of kinetic, potential and
internal energy is conserved

d
dt

(Ekin + Epot + E int)(t) = 0, (E int := cVρθ)

Helicity Conservation: The helicity is conserved

dtH = 0.



Relation Compressible-Incompressible: Mach Number Limit

Isentropic Euler Equations with Pressure Equation

∂tp + v · ∇p + γp div(v) = 0, (γ :=
cv

cp
)

∂tv + curl v × v +∇
( |v|2

2
+Φ

)
+

∇p
ρ

= 0.

Discrete Isentropic Euler Equations

•
〈
∂tp + div[PT (γp)Pu∂P ],1

〉
HP

+
〈
γ′p,divMu∂P

〉
HP

= 0

•
〈 d

dt
Mu∂P , ϕ

〉
H∂P

+
〈
ω∂P̂ ⋆ u∂P +Mgrad

( |Pu∂P |2R3

2
)
, ϕ

〉
H∂P

+
〈
PT (

1
ρ
Pgradp)

)
, ϕ

〉
H∂P

=
〈
MgradΦ, ϕ

〉
H∂P

,
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Relation Compressible-Incompressible: Mach Number Limit

Theorem
Compressible-Incompressible

(uϵ
∂P ,p

ϵ) solution of compressible Euler eq.
(u∂P ,p) solution of incompressible Euler eq.
well-prepared initial conditions:
divuϵ

∂P(t = 0) = O(ϵ), pϵ(t = 0) = p(t = 0) +O(1)
Then solution of compressible equations (u∂P

ϵ,pϵ) can be written as

uϵ
∂P = u + U︸ ︷︷ ︸

slow part

+Ũ +O(ϵ), pϵ = p + P︸ ︷︷ ︸
slow part

+P̃ +O(ϵ),

where

(U,P) solution to linearized incompressible Euler

(Ũ, P̃) solution to equations of linear acoustics
∂ttP ′ = ∆MP ′, curlU ′ = 0 (∆Mu := divMgradu).

(Proof by analysis of multiscale expansion w.r.t. ϵ)

Discrete version of classical PDE-results from Klainermann-Majda,
Kreiss, Schochet. . . .



Overview

I will discuss the following topics

i Incompressible Dynamics (∼ ocean)
ii Compressible Dynamics (∼ atmosphere)
iii Singular Limits (relation between different equations)
iv Lessons learned



Lesson I: Grids do not matter

Observation
Discrete differential operators & reconstructions mesh-unaware

Consequence: Mesh-Independence

Results valid for:
triangular △, hexagonal 7 and rectangular □ cells
Results valid for mixed grids □△7△△□□ or Delauny-Voronoi
polygons.

Case of rectangular grids □

Discrete differential operators become classical finite differences
Reconstructions become familiar averages
Nonhydrostatic: MAC method for Navier-Stokes
(Harlow-Welch,1965)
Hydrostatic Boussinesq: same velocity eq. as NEMO

Nonlinearity conserves 3D-Energy and in 2D energy &
enstropy
This is again also valid for triangular and hexagonal meshes
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Lesson I: Grids do not matter

2D Incompressible Euler: ∂tω + v · ∇ω = 0

∂t△ψ + J (ψ,△ψ) = 0
stream function v := ∇⊥ψ, ω = △ψ Jacobian J

Arakawa’s Jacobian J conserves energy & enstrophy on quads

J (ψ,△ψ) = 1
3J1(ψ,△ψ) + 1

3J2(ψ,△ψ) + 1
3J3(ψ,△ψ),

J1(p,q) := δ2xpδ2y q − δ2xqδ2y p,
J2(p,q) := δ2x

(
pδ2y q

)
− δ2y

(
pδ2xq

)
,

J3(p,q) := δ2y
(
qδ2xp

)
− δ2x

(
qδ2y p

)
.

Arakawa’s Jacobian and P̂†(ωP̂v)

J (ψ,△ψ) = K(ψ,△ψ)
with K(ψ,△ψ) := curlP̂†(△ψP̂gradτψ)
→ This suggests K as a generalization of Arakawa’s Jacobian to
general grids.



Lesson I: Grids do not matter

2D Incompressible Euler: ∂tω + v · ∇ω = 0

∂t△ψ + J (ψ,△ψ) = 0
stream function v := ∇⊥ψ, ω = △ψ Jacobian J

Arakawa’s Jacobian J conserves energy & enstrophy on quads

J (ψ,△ψ) = 1
3J1(ψ,△ψ) + 1

3J2(ψ,△ψ) + 1
3J3(ψ,△ψ),

J1(p,q) := δ2xpδ2y q − δ2xqδ2y p,
J2(p,q) := δ2x

(
pδ2y q

)
− δ2y

(
pδ2xq

)
,

J3(p,q) := δ2y
(
qδ2xp

)
− δ2x

(
qδ2y p

)
.

Arakawa’s Jacobian and P̂†(ωP̂v)

J (ψ,△ψ) = K(ψ,△ψ)
with K(ψ,△ψ) := curlP̂†(△ψP̂gradτψ)
→ This suggests K as a generalization of Arakawa’s Jacobian to
general grids.



Lesson I: Grids do not matter

2D Incompressible Euler: ∂tω + v · ∇ω = 0

∂t△ψ + J (ψ,△ψ) = 0
stream function v := ∇⊥ψ, ω = △ψ Jacobian J

Arakawa’s Jacobian J conserves energy & enstrophy on quads

J (ψ,△ψ) = 1
3J1(ψ,△ψ) + 1

3J2(ψ,△ψ) + 1
3J3(ψ,△ψ),

J1(p,q) := δ2xpδ2y q − δ2xqδ2y p,
J2(p,q) := δ2x

(
pδ2y q

)
− δ2y

(
pδ2xq

)
,

J3(p,q) := δ2y
(
qδ2xp

)
− δ2x

(
qδ2y p

)
.

Arakawa’s Jacobian and P̂†(ωP̂v)

J (ψ,△ψ) = K(ψ,△ψ)
with K(ψ,△ψ) := curlP̂†(△ψP̂gradτψ)
→ This suggests K as a generalization of Arakawa’s Jacobian to
general grids.



Lesson II: How to make a model unstable

C-staggering

Preference of vector invariant nonlinearity: curlv × v + |v |2
2

First Way to Instability: Specification of Kinetic Energy |v |2
2 ?

C-grid models strugglea with kinetic energy formulation |v⃗ |2

Orthogonal vs non-orthogonal grids
Plancherels theorem: sum of squared components gives vector
lengh if and only if components are from orthonormal basis.
Rectangular=Orthogonal : sum of squared components
|v⃗ |2 ∼

∑
e∈∂□ |ve|2 is justified

Unstructured=Non-orthogonal: need to rely on square of
reconstructed vector |v⃗ |2 ∼ |Pv |2
→ This implies a mass matrix M
Using sum of squares on unstructured grids creates energy
source/sink

a
ICON-A: Zängl, QJRMS, 2017, MPAS-A: Skamarock-Klemp, MWR, 2012



Lesson II: How to make a model unstable

Second Way to Instability: Exterior Product ω × v

Mixture of vector-invariant and advective form of nonlinearity
(partly vector invariant, partly advective)
Prohibits cancelation of fluxes
Ambiguous nonlinearity impedes energetic consistency and
other conservation properties
Lack of energetic consistency degrades models stability
properties

Time Stepping

Fully discrete conservation laws presented here demand implicit time
stepping.



Lesson III: Template Character of Algorithm

Not Negotiable: Algorithmic Essentials

Clean kinetic energy definition Ekin:

Non-orthogonal grids: reconstruction-based mandatory
Orthogonal grids: sum of squares or by reconstruction.

3D-vector-invariant form of nonlinearity

Negotiable: Algorithmic Degrees of Freedom

Reconstructions: different reconstructions can be used
Vertical coordinates
(we know how to do this)
Lumping mas matrix in time derivative: short-cut to inverse M−1

Higher-Order, upwind-biased reconstructions
Flux limiters
Time stepping: alternative time steppings can be used
(implicit used here for theoretical beauty)
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The Discrete Hierarchy of Atmosphere-Ocean Equations


