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Overview

| will discuss the following topics

@ Incompressible Dynamics (~ ocean)
@ Compressible Dynamics (~ atmosphere)

Singular Limits (relation between different equations)
@ Lessons learned

Focus on finite-dimensional setup and nonhydrostatic dynamics |




Incompressible Dynamics: From Hydrostatic to Nonhydrostatic

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

Velocity field: v = (vj, W), horizontal velocity vy, vertical velocity w

. Vh|va|? 1
OtVh + wz€7 X Vh + M + wWo>Vh + ;Vhp —Dv,=0
0
9z2p = —pg
n
om + divh/ vdz=0
-B

divhpvp+ 0w =0
9;C + div(Cv) — div(K°VC) =0
P = Feos(p7 T7 S)a
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Incompressible Dynamics: From Hydrostatic to Nonhydrostatic

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

Vh|Vh|?
2
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OtVh + wz€7 X Vp + + Wzvh + p—Vhp—D\/: 0
0

0:p = 0=
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om + div, dz=0
B

divpvp+ 0w =0

0:C + div TKCVC) =0
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This is the Hydrostatic Euler Equation.
How can we make it NonHydrostatic ?




From Hydrostatic to NonHydrostatic Euler Eq. - Two Routes

Route A to Nonhydrostatic Euler: add w-eq to hydrostatic egs.

2
= V
OtVh + wz€z X Vh + Wazvh+vh(p+ |£|) =0,

ow + (v,w)-Vw+ 9,p =0,

Route B to Nonhydrostatic Euler: 3D vector-invariant

2
OV +wxVv+V(p+ %) =0 (v,w are 3D vector fields)



From Hydrostatic to NonHydrostatic Euler Eq. - Two Routes

Route A to Nonhydrostatic Euler: add w-eq to hydrostatic egs.

2
= V
OtVh + wz€z X Vh + Wazvh+vh(p+ |£|) =0,

ow + (v,w)-Vw+ 9,p =0,

Route B to Nonhydrostatic Euler: 3D vector-invariant

2
OV +wxVv+V(p+ %) =0 (v,w are 3D vector fields)

o Route A: easy to implement, breaks beauty of Euler equation.
(no consistent vorticity eq., energetics presumably impossible...)

@ Route B challenge is discrete exterior product w x v

Strategy: we go for Route B

@ Focus on inviscid case and get conservation properties
@ Incorporate dissipation via explicit dissipation, upwind-biased . ..




Euler: Discrete Advection

Incompressible Euler Equations

ov+wxv+V(p+My=0 dvw=0




Euler: Discrete Advection

Incompressible Euler Equations

ov+wxv+V(p+My=0 dvw=0

v

Advection - Continuous Cross Product

. : Wy Vz — Wz V,
horiz. v-equation: (w x V)|, = ( vtz w2 y) :
WzVx — wxVz

vert. v-equation: (w x V)|y = wh - Vi = ( wxVy — wy V).

@ blue/Hydrostatic: Cross-product terms with vertical vorticity w,
9@ red/Nonhydrostatic:Cross-product terms with horiz. vorticity wy,

@ — we have blue we need red

A\



Euler: Discrete Advection

We need 3D vorticity vector (wp,w,) and construct missing wy, via
Stokes Theorem

Horizontal component of vorticity vector - continuous

wh 1= curlyv = ( wy) = < DoV — DV



Euler: Discrete Advection

We need 3D vorticity vector (wp,w,) and construct missing wy, via
Stokes Theorem

Horizontal component of vorticity vector - continuous

wh 1= curlyv = ( wy) = < DoVy — OV

Three Observations

@ Prismatic grid: 2D horizontal x 1D vertical
@ Dual prism is shifted horizontally and vertically
@ Vertical faces are rectangles !



Vorticity Vector for Discrete Advection

Horizontal component of vorticity vector w, via Stokes

wh  ~—=  CUMpUyp = Wik ki1/2 + Vek — Wi ki1/2 — Vek+
——
by Stokes
This defines
o discrete 3D curl-operator: curluye = (curlyusp, curl, usp)
o vorticity vector at faces of dual prism w,p := (wh,wy)



Discrete Advection - Vorticity Flux via Discrete Cross Product

wyVz —wzV A N ~
y'e— wey Pl(wzPpv) — PoPT (WPhwp)
WzVxy — wWxVz |~ wWop *x Ugp = ~

zVx xVz oP oP Brwp - PPTv
wyVy — wyVx hh Z

the secret sauce
o P, P, P are Hilbert space compatible reconstructions




Vorticity Vector for Discrete Advection

Kernel of Differential Operators

@ gradp = 0if and only if p is constant

@ curlv=o0ifandonlyif v=gradp
divv = 0ifand only if v = curl" u.

Discrete Biot-Savart:

From given w € H, the velocity upp € Hop with divM usp = 0, is
recovered by solving Laplace equation

divMgrad uyp = curlw.



Numerical Disgression I: Virtual Finite-Elements - Local Approximation Space

Cont. Velocity Space & Discrete Degrees of Freedom on Prism Q

e F(Q) := {f € Hgiv(Q) N Hiot(Q) : divf € Py(Q), curl f =0,
fle - ne € Po(Q) Ve € 0Q},

] dOfF(Q)(f) =Mf:= 16‘ /f nh.ds, Vee Q.
e




Numerical Disgression I: Virtual Finite-Elements - Local Approximation Space

Cont. Velocity Space & Discrete Degrees of Freedom on Prism Q

e F(Q) := {f € Hgiv(Q) N Hiot(Q) : divf € Py(Q), curl f =0,
fle - ne € Po(Q) Ve € 0Q},

] dOfF(Q)(f) =Mf:= 16‘ /f nh.ds, Vee Q.
e

A\

Discrete DoF’s above are unisolvent, i.e. they characterize uniquely
the respective continuous virtual element space.



Numerical Disgression Il: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions of disc. DoF via local PDEs

Given discrete velocity dof’s v, € 0Q. Define continuous
function ¥ := Pv on Q as solution of local div-curl problem

divv = divv, on Q,
curl v =0, on Q,




Numerical Disgression Il: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions of disc. DoF via local PDEs

Given discrete velocity dof’s v, € 0Q. Define continuous
function v := Pv on Q as solution of local div-curl problem

divi = divv, on Q,
curlv=0, on Q,

Scalar Product on Discrete Velocity Space in Terms of

Reconstructions

(u,v) v /Pu Pv dx

/Pu Pvdx =) |QPug- Pvo,
QeC



Numerical Disgression lllI: Virtual Finite-Elements - Scalar Products &
Reconstructions

Pressure & Vorticity

For pressure and vorticity spaces similar scalar products via
reconstructions via local div-curl PDEs.




Numerical Disgression lllI: Virtual Finite-Elements - Scalar Products &

Reconstructions

Pressure & Vorticity

For pressure and vorticity spaces similar scalar products via
reconstructions via local div-curl PDEs.

Fundamental Lemma on Reconstructions

Let P : ve — Pv € F(Q) be a reconstruction such that
o P is the right-inverse of projection Nf := % J.f-ned

@ P is first-order accurate
@ P commutes with continuous differential operators grad, div, curl

@ Reconstructed functions are orthogonal to linear polynomials on
Q with zero mean

O P has a local stencil
Then it holds [, PV - eidx = Y0 Vel€l(Xe — Xq) - €i-

(Analogous results for P, P)



Numerical Disgression lllI: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions

@ Div-Curl- PDE are actually never solved.
@ Reconstructions have an explicit & computable form.
@ We need three Reconstructions

P: face dof — inside primal 3D prism
P: face dof — inside 3D dual prism
Pp: edge dof — inside 2D primal cell
M:=PTP

End of Numerical Disgression - Back to Euler Equations

© 06 0 ©




Euler Equations - Incompressible

Incompressible Euler

d
o<a

Mupp, ¢>H8P + (wyp * Ugp, ¢>H8P

PusplZs

+(Mgrad(p+ —

e divMuyp = 0.

):6)50,, = 0. Y6 € Hop,



Euler Equations - Incompressible

Incompressible Euler

d
<dtMU8P’ ¢>Ha (Wop * Upp, ¢5>H8P

PusplZs

+(Mgrad(p+ —

e divMuyp = 0.

):6)50,, = 0. Y6 € Hop,

Pressure Recovery

Pressure is recovered from ugp € Hgp by solving Laplace equation
divMgradp = —dlngrad(M) —divL(w,p, Usp)



Euler Equations - Incompressible

Theorem (Well-Posedness of Semi-Discrete Euler Equations)

o Let a time interval [0, T] and initial conditions uy € H%¥ be given.

Then there exist for t € [0, T] a unique solution uyp(t) € Hop of the
discrete Euler equations.

(Proof by Picard’s theorem for ODE for short time and extension to
long time via energy conservation.)



Euler Equations - Incompressible

Theorem (Well-Posedness of Semi-Discrete Euler Equations)

o Let a time interval [0, T] and initial conditions uy € H%¥ be given.

Then there exist for t € [0, T] a unique solution uyp(t) € Hop of the
discrete Euler equations.

\

(Proof by Picard’s theorem for ODE for short time and extension to
long time via energy conservation.)

Well-Posedness of Semi-Discrete Navier-Stokes

Proof translates to Navier-Stokes equations,
with dissipation given by D(v) := curl” (veurluyp).




Incompressible Euler: Invariants |

Linear Momentum

Let usp € HZM be a solution of the Euler equation. Then the linear
momentum Z :— (PTPugp, 1), satisfies
d

dt

Z=0.



Incompressible Euler: Invariants |

Linear Momentum

Let usp € HZM be a solution of the Euler equation. Then the linear

momentum I = (PTPugp, 1>H7;. satisfies
d
1=
at 0

Angular Momentum L := X x U

@ Question: How to define L := X x u for staggered 4 = (v, w) ?

o Observation: Vector product & x i ~ wyp * Upp



Incompressible Euler: Invariants |

Linear Momentum

Let usp € HZM be a solution of the Euler equation. Then the linear

momentum I = (P"Puyp, 1>H7;. satisfies
d
=T =0.
at 0

|
!
L

Angular Momentum L := x x u

@ Question: How to define L := X x u for staggered 4 = (v, w) ?

o Observation: Vector product & x i ~ wyp * Upp

Angular Momentum - Definition and Conservation

Define discrete angular momentum:
((ugp) == X * Ugp,

where X is coordinate vector of the position of vorticity at dual prism
faces. Then

%<€(U@p), 1> =0



Incompressible Euler: Invariants Il

Theorem (Energy Conservation)

The solution upp(t) € HIy of the discrete incompressible Euler
equations conserves kinetic energy:

d ) .
GET(D =0, E(t) = ||Patop(t)

2D: Energy and enstrophy conservation.




Incompressible Euler: Invariants Il

Theorem (Energy Conservation)
The solution upp(t) € HIy of the discrete incompressible Euler
equations conserves kinetic energy:

d ) .
GET(D =0, E(t) = ||Patop(t)

2D: Energy and enstrophy conservation.

Helicity: Inner Product of Velocity & Vorticity

Hi= [V -wdx | H:= <73sz,1>%‘7 + <W75hwh7 1>HP



Incompressible Euler: Invariants Il

Theorem (Energy Conservation)

The solution upp(t) € HIy of the discrete incompressible Euler
equations conserves kinetic energy:

d i .
GE(0) =0, EN(t) = [[Patop(t)’ Iy

2D: Energy and enstrophy conservation.

Helicity: Inner Product of Velocity & Vorticity

Hi=[qv-wdx | H:i= <75sz,1>%‘7 + (WPhwn, 1),

Theorem (Helicity Conservation)

The solution ugp, (t) € HZ¥ of the discrete 3D incompressible Euler
equations conserves helicity:

dH=0.

(Proof by combining equations for vorticity and velocity and suitable
test functions in discrete weak form.)



Fully Discrete System

Time stepping - Implicit

]
M(ugp' — ugp)

1/2 1/2
< At ’¢>7‘18P + <wg; " Ug; / ’¢>HaP
| Ug;1/2|23 1/2
+ <Mgrad(,0n+1/2 + %)a ¢>HOP - <fn+ / 7¢>H8P7

divMmult! =0,

n+1/2 _ 1¢,,n+1 n
where uyp '“ = 5(Uyp + U5p)



Well-Posedness of Discrete Euler Equation

e Let At > 0 be the time step size and uS,inHIM initial conditions.
Then a unique solution exists (ujp, p") of incompressible Euler with
the following properties:

@ (uls,p") conserves global kinetic energy, EX"(uf,) = EXN(uSp)

@ (uls,p") conserves linear momentum Z(ufp) = Z(uSp) and
angular momentum ¢(ufp) = £(u3p)

@ (ulp,p") conserves vorticity <waf,”,1>% = <waf,°,1>H )
v

@ (uls,p") conserves helicity H(ulp) = H(uSp)

@ (ulp,p") is reversible in time

(Proof: Schauder fix point theorem, differentiability of mapping for
uniqueness. Conservation properties rely on implicit time stepping.)

Navier-Stokes Equations
Proof applies to Navier-Stokes, without conservation props.




Euler-Boussinesq Equations - Incompressible & Varying Density

Now allow the density to vary - but not to compress J

Incompressible Euler-Boussinesq Equations

2
OV+wxV+V(p+ "’2) = gpé;, divw=0

drp + div(pv) = 0.




Euler-Boussinesq Equations - Incompressible & Varying Density

Now allow the density to vary - but not to compress

Incompressible Euler-Boussinesq Equations

2
OV+wxV+V(p+ "’2) = gpé;, divw=0

drp + div(pv) = 0.

Euler-Boussinesq

Mupp, ¢>H8P + (wyp * Ugp, ¢>H8P

[Puspl 2
+ <Mgrad (p+ T]Ra)7¢>7-lap = <gp927 ¢>'HP

° diV./\/anP =0,
o (0ep, )y, + (diV(PT(pPV)),¥),, = 0.

o<a



Euler Boussinesq Invariants

Theorem (Well-Posedness of Semi-Discrete Euler-Boussinesq)

i) A unique solution usp(t) € HI¥, p € Hp to discrete
Euler-Boussinesq equations exists
i) and it has the following properties

o Energy Conservation: The sum of kinetic and potential energy
is conserved
d

(BN EP)(1) = 0, EP:= gpQw

@ Helicity Conservation The solution upp, (t) € HZ% of the
discrete 3D incompressible Euler equations satisfies

diH = F(9). (¢ geopotential)



New Invariant: Potential Vorticity (Mass Weighted )

PV - Continuous:

PV =w-Vp

PV - Discrete: Inner Product of w and gradp

PV(uyp)|p :=(w: Prgradp, 1>Haf=: + (whDzp, 1),

apll



New Invariant: Potential Vorticity (Mass Weighted )

PV - Continuous:

PV =w-Vp

PV - Discrete: Inner Product of w and gradp

PV(uyp)|p :=(w: Prgradp, 1>Haf=: + (whDzp, 1),

apll

Potential Vorticity Conservation

Let usp € HI¥M be a solution of the Euler-Boussinesq
equations. Then

d
PV 1), =0.

Proof by combining equations for vorticity and for density gradient.



Well-Posedness of Discrete Euler-Boussinesq Equation

Theorem - Implicit Time stepping

Let At > 0 be the time step size. Let initial conditions usp® € HIM
be given. Then there exists a unique solution (ujp, p") of
Euler-Bousinesq with the following properties:

@ (ulp, p") conserves global kinetic energy, EX"(ufp) = EX(u9,)

@ (ulp,p") conserves linear momentum Z(ul,) = Z(up)
@ (uls,p") conserves helicity H(uls) = H(up)
@ (uls,p") conserves the potential vorticity PV(u3,) = PV(u3p)




Relation Hydrostatic & Nonhydrostatic: Hydrostatic Limit

Small Aspect Ratio ¢

@ Thin domain: Q. = [-1,1]? x [—¢, ¢] transform into Q := [-1,1]®
o Transformation:

VC(X7.y7Z’ t) = V(X7.y’62’ t)77 pe(xﬁy7z7 t) = p(X7Y7€z7 t)

”
We(x,y,z,t) := —w(x,y,ez,t).
€

Scaled Euler Equations

2
OtV + (curlve x v¢)|p + Vh|v§ + Vppe =0,
2 o |V6|2 _
€ W + (curlve x v.)|y + 0z 5 + dzp. = 0,

divv, + d;w, = 0.

5\



Relation Hydrostatic & Nonhydrostatic: Hydrostatic Limit

Scaled Euler Equations v, = (v4, Vo, v3), V; = Vi(X, ¥, Z, )

[ve[?

Ove + (curlve x v.)|p + Vi 5 + Vppe =0,
2
62{8tWE + (curlve x vo)|y + 0 |v£| } + 9zp. = 0,

divv, + 0,w,. = 0.

Hydrostatic Euler Equations v = (vy, v2), v, = Vi(Xx, ¥, 2, t)

v2
oV + (curlv x v)|p + th + Vapp =0,

2
8Zp = 07
divvy+ 0w = 0.

What happens fore — 0 ?



Relation Hydrostatic & Nonhydrostatic: Discrete Hydrostatic Limit

Discrete Scaled Euler Equations

d S
° <Eth6 +wyp x Uapmh + thradn( é(/n + p6)7 ¢h>H}- =0,

d Puyp|?
° <€2{dtwe + Wyp * U(‘)P‘gh + Dz(|ZP|)} + szev ¢V>HP =0,

e divpMpuve +div,w® =0,

Discrete Hydrostatic Euler Equations

hyd

Mav + = e+ Migrac(p-+ ) ), =0

Q
rn

o (=
at

L4 <PZDZp) ¢V>'HP = 07

e divpMpv 4+ div,w = 0,

What happens for e — 0 ?



Relation Hydrostatic & Nonhydrostatic: Discrete Hydrostatic Limit

In the aspect ratio limit, ¢ — 0,

the solution (ug’;,, p™) of the (nonhydrostatic) Euler equations
converges

to the solution (u}}¥, p'¥) of the hydrostatic Euler equations.




Relation Hydrostatic & Nonhydrostatic: Discrete Hydrostatic Limit

In the aspect ratio limit, ¢ — 0,

the solution (ug’;,, p™) of the (nonhydrostatic) Euler equations

converges

to the solution (u}}¥, p'¥) of the hydrostatic Euler equations.
o Consider equation for the difference du := u — uy.

o Analyze difference of nonlinear terms

0 Wyp * Uapmh —Wyp * Uapzyd
o wPeurl,u™ — wIp,D,u"
~ curl,u™ — Du™
@ Scalar product of difference equation with
ou and energy estimate

@ — Horizontal curly, is crucial for estimate

y

Theorem is discrete version of PDE result by J. Li and E.S. Titi (2019)

y



Discrete Primitive Equations: ICON-O

Let G = A be a triangular grid.

Velocity : <1th, o) + (PT[(f +w)PV], o)

at
T [PviZe
+(PTQ(WD,Pv), ¢) + (Mgrad[—], ¢)
+ (PTPgrad(gn + prya), ¢) — (Lv, ) = (Fy, )
Incompress. : divpMpv +D,w =0
k:Nrop

0 .
Free Surface : <8—7Z,1/J> + (div] kZ:O P (AzcPW)],¢) =0
Tracer : <%,w> —(divPPT(CPv),v) + (LC, %)

= (Fe,v)

P. K. Formulation of an Unstructured Grid Model for Global Ocean Dynamics (J. Comp. Phys. 339 (2017))



Discrete Primitive Equations: ICON-O

o Let a vertical mixing scheme of PP-type be active.

Then the semi-discrete hydrostatic Boussinesq ICON-O equations
with a free surface have a unique solution, provided the forcing is
sufficiently “nice”.

Corollary

The same statement applies if the mesoscale eddy parametrization of
Gent-McWilliams-Redi is included and discretized by
structure-preserving numerics 4.

pK A structure-preserving discretization of ocean parametrizations on unstructured grids (Ocean Modell.
(2018))



Compressible Euler Equations

Now allow the density to vary and to compress

y

Compressible Euler: Momentum vs Velocity

Momentum: Op + div(pv) =0,

ai(pv) + peurlv x v + pV (ML + &) + vdiv(pv) + Vp =0,
d(pe) + div(v(pe + p)) = 0,
Energy: pe:= % +cyT +pd, EOS:p=pRT.

Velocity: Oip + div(pv) =0,
o+ curlv x v+ V(4 1+ 9) + T2 =0,
d(pe) + div(v(pe+ p)) =0,

We use velocity form in analogy with ICON-A.
Similar results for momentum form.



Compressible Euler Equations

Discrete Compressible Euler

d [PusplZs
J <EMU8P7 ¢>H8P + (wyp * Uap + Mgrad(T), ¢>Hap

1

+ <7DT(;7>gradp)),¢>HaP = (Mgrad®, ¢),
o (0p + divP(PT(pPUsp), ), = O,
o (0(p0) + div(PT(p0PUsp), 1), = O,

\

Theorem (Well-Posedness of Compressible Euler Equations)
Let a time interval [0, T] and initial conditions

9 upp(t=0)=up, and (t = 0) = b

0 p(t=0) = pg with pp > ¢ > 0 be given.

Then there exist for t € [0, T] a unique solution uyp(t) of the discrete
compressible Euler equations.

We need to assume upwind advection for p to avoid vacuum.



Compressible Euler - Invariants

Solution uyp(t) of discrete compressible Euler equations
satisfies
o Energy Conservation: The sum of kinetic, potential and
internal energy is conserved

%(Ekin + Epot + Ei”f)(t) _ 0’ (Eint = Cvpe)

o Helicity Conservation: The helicity is conserved

diH=0.



Relation Compressible-Incompressible: Mach Number Limit

Isentropic Euler Equations with Pressure Equation

. c
op+V-Vp+ypdiv(v) =0, (v := C—V)
0
2
atv+cur/v><v+V(|V2|+¢) +Vpp =0.



Relation Compressible-Incompressible: Mach Number Limit

Isentropic Euler Equations with Pressure Equation

. c
op+V-Vp+ypdiv(v) =0, (v := C—V)
0
2
atv+cur/v><v+V(|V2|+¢) +Vpp =0.

Discrete Isentropic Euler Equations

o (9o + diV[PT (vp)Pugp], 1),,, + (7P, divVMuUgp), =0

d ’PUGP‘Z:’,
® <EMUOP7¢>H TR)’¢>HOP

]
- <PT(;Pgradp)),q§>H0P = (Mgrad®, ¢),

- + <w8,3 * Ugp + Mgrad(

14}

\



Relation Compressible-Incompressible: Mach Number Limit

Compressible-Incompressible
0 (ugp, p°) solution of compressible Euler eq.
9O (uspp, p) solution of incompressible Euler eq.
o well-prepared initial conditions:
divugp(t =0) = O(e), p(t=0)=p(t=0)+0O(1)
Then solution of compressible equations (usp€, p°) can be written as
uapzw+u+0(e), p :M+P+O(e),

slow part slow part

where
9 (U, P) solution to linearized incompressible Euler
o (U, P) solution to equations of linear acoustics
P = AmP, curll =0 (Apu:=divMmgradu).

(Proof by analysis of multiscale expansion w.r.t. ¢)

Discrete version of classical PDE-results from Klainermann-Majda,
Kreiss, Schochet. . ..



Overview

| will discuss the following topics

@ Incompressible Dynamics (~ ocean)

@ Compressible Dynamics (~ atmosphere)

Singular Limits (relation between different equations)
@ Lessons learned




Lesson I: Grids do not matter

Observation
o Discrete differential operators & reconstructions mesh-unaware

Consequence: Mesh-Independence
0 Results valid for:
triangular A, hexagonal © and rectangular O cells
0 Results valid for mixed grids DACAAOO or Delauny-Voronoi
polygons.



Lesson I: Grids do not matter

Observation
o Discrete differential operators & reconstructions mesh-unaware

Consequence: Mesh-Independence

O Results valid for:
triangular A, hexagonal © and rectangular O cells

0 Results valid for mixed grids DACAAOO or Delauny-Voronoi
polygons.

Case of rectangular grids O
o Discrete differential operators become classical finite differences
@ Reconstructions become familiar averages
o Nonhydrostatic: MAC method for Navier-Stokes
(Harlow-Welch,1965)
o Hydrostatic Boussinesq: same velocity eq. as NEMO
o Nonlinearity conserves 3D-Energy and in 2D energy &

enstropy
o This is again also valid for triangular and hexagonal meshes




Lesson I: Grids do not matter

2D Incompressible Euler: 0w + v - Vw =0

0 KLY+ T, AY) =0
o stream function v := V14, w = A« Jacobian J



Lesson I: Grids do not matter

2D Incompressible Euler: 0w + v - Vw =0

0 KLY+ T, AY) =0
o stream function v := V14, w = A« Jacobian J

Arakawa’s Jacobian 7 conserves energy & enstrophy on quads

J1(p, Q) := 02xPd2yq — d2xqd2y P,
TP, Q) := b2x(Pd2yq) — b2, (P2xq),
T3(P, Q) := 62y (q02xP) — 62x(Q02yP).




Lesson I: Grids do not matter

2D Incompressible Euler: 0w + v - Vw =0

0 AP+ T, Ap) =0
o stream function v := V14, w = A« Jacobian J

Arakawa’s Jacobian 7 conserves energy & enstrophy on quads

T, A) = FT1 (1, M) + 3T, D) + FT3(, Avp),
J1(P, q) := 02xPd2yq — d2xqd2yP,

J2(P, q) := 2x (Pd2yq) — 02y (P2xq),

T3(P. ) := 82y (q02xP) — dox (q2yp).

Arakawa’s Jacobian and P (wPv)

T, M) =K, 0v)

with (v, Av) = eurlPT(AyPgrad_ 1))

— This suggests K as a generalization of Arakawa’s Jacobian to
general grids.



Lesson II: How to make a model unstable

C-staggering

, , . . 2
Preference of vector invariant nonlinearity: curlv x v + %

First Way to Instability: Specification of Kinetic Energy % ?

o C-grid models struggle? with kinetic energy formulation |v/|?
@ Orthogonal vs non-orthogonal grids

o Plancherels theorem: sum of squared components gives vector
lengh if and only if components are from orthonormal basis.

o Rectangular=0Orthogonal : sum of squared components
V2 ~ Y ecom | Vel? is justified

@ Unstructured=Non-orthogonal: need to rely on square of
reconstructed vector |V|? ~ |Pv|?
— This implies a mass matrix M

@ Using sum of squares on unstructured grids creates energy
source/sink

2 1CON-A: Zéangl, QJRMS, 2017, MPAS-A: Skamarock-Klemp, MWR, 2012



Lesson II: How to make a model unstable

Second Way to Instability: Exterior Product w x v

@ Mixture of vector-invariant and advective form of nonlinearity
(partly vector invariant, partly advective)

o Prohibits cancelation of fluxes

@ Ambiguous nonlinearity impedes energetic consistency and
other conservation properties

@ Lack of energetic consistency degrades models stability
properties

\

Time Stepping
Fully discrete conservation laws presented here demand implicit time
stepping.




Lesson lll: Template Character of Algorithm

Not Negotiable: Algorithmic Essentials

o Clean kinetic energy definition E47:

o Non-orthogonal grids: reconstruction-based mandatory
o Orthogonal grids: sum of squares or by reconstruction.

@ 3D-vector-invariant form of nonlinearity



Lesson lll: Template Character of Algorithm

Not Negotiable: Algorithmic Essentials

o Clean kinetic energy definition E47:

o Non-orthogonal grids: reconstruction-based mandatory
o Orthogonal grids: sum of squares or by reconstruction.

@ 3D-vector-invariant form of nonlinearity

A

Negotiable: Algorithmic Degrees of Freedom

@ Reconstructions: different reconstructions can be used

@ Vertical coordinates
(we know how to do this)

o Lumping mas matrix in time derivative: short-cut to inverse M
@ Higher-Order, upwind-biased reconstructions

O Flux limiters

0

Time stepping: alternative time steppings can be used
(implicit used here for theoretical beauty)



«Or «F» «=)»

<

int
v

o>



