From Virtual Navier-Stokes Flows to Numerical Atmosphere & Ocean Models or *A Discrete Model Hierarchy*

Peter Korn

Max Planck Institute for Meteorology, Hamburg

CLIVAR & COMMODORE workshop, NCAR, September 9

I will discuss the following topics

- ⁱ Incompressible Dynamics *(*∼ *ocean)*
- ii Compressible Dynamics *(*∼ *atmosphere)*
- **iii** Singular Limits *(relation between different equations)*
- iv Lessons learned

Focus on **finite-dimensional** setup and **nonhydrostatic dynamics**

 OQ

세 미 세 세 레 메 세 프 메 세 프 메 니 프

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

Velocity field: $\mathbf{v} = (v_h, w)$, horizontal velocity v_h , vertical velocity *w*

$$
\partial_t v_h + \omega_z \vec{e}_z \times v_h + \frac{\nabla_h |v_h|^2}{2} + w \partial_z v_h + \frac{1}{\rho_0} \nabla_h p - \mathcal{D} v_h = 0
$$

\n
$$
\partial_z p = -\rho g
$$

\n
$$
\partial_t \eta + \text{div}_h \int_{-B}^{\eta} v \, dz = 0
$$

\n
$$
\text{div}_h v_h + \partial_z w = 0
$$

\n
$$
\partial_t C + \text{div}(C\mathbf{v}) - \text{div}(\mathbb{K}^C \nabla C) = 0
$$

\n
$$
\rho = F_{\text{eos}}(p, T, S),
$$

 OQ

세 미 세 세 레 메 세 프 메 세 프 메 니 프

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

$$
\partial_t v_h + \omega_z \vec{e}_z \times v_h + \frac{\nabla_h |_h v|^2}{2} + w \partial_z v_h + \frac{1}{\rho_0} \nabla_h p - \mathcal{D} v_h = 0
$$

\n
$$
\partial_z p = 0 \rightarrow \rho g
$$

\n
$$
\partial_t \eta + \text{div}_h \int_{-B}^{\eta} v \, dz = 0
$$

\n
$$
\text{div}_h v_h + \partial_z w = 0
$$

\n
$$
\frac{\partial_t C + \text{div}(Cv) - \text{div}(\mathbb{K}^C \nabla C) = 0}{\rho = E_{\text{cos}}(p, T, S)},
$$

イロト イ部ト イミト イモトー

 OQ

目

Starting Point: Primitive Equations - Hydrostatic and Boussinesq

$$
\partial_t v_h + \omega_z \vec{e}_z \times v_h + \frac{\nabla_h |v_h|^2}{2} + w \partial_z v_h + \frac{1}{\rho_0} \nabla_h \rho - \mathcal{D}v_h = 0
$$

\n
$$
\partial_z \rho = 0 \ \ \text{and}
$$

\n
$$
\partial_t \eta + \text{div}_h \int_{-B}^{\eta} \nabla dz = 0
$$

\n
$$
\text{div}_h v_h + \partial_z w = 0
$$

\n
$$
\partial_t C + \text{div}(Cv) - \text{div}(\mathbb{K}^C \nabla C) = 0
$$

\n
$$
\rho = E_{\text{cos}}(\rho, T, S),
$$

This is the Hydrostatic Euler Equation. How can we make it NonHydrostatic ? Route A to Nonhydrostatic Euler: add *w*-eq to hydrostatic eqs.

$$
\partial_t v_h + \omega_z \vec{e}_z \times v_h + w \partial_z v_h + \nabla_h (p + \frac{|v_h|^2}{2}) = 0,
$$

$$
\partial_t w + (v, w) \cdot \nabla w + \partial_z p = 0,
$$

Route B to Nonhydrostatic Euler: 3D vector-invariant

 $\partial_t \mathbf{v} + \omega \times \mathbf{v} + \nabla \big(\boldsymbol{\rho} + \frac{|\mathbf{v}|^2}{2} \big)$ $\frac{|\mathbf{a}|^2}{2}$ = 0 (**v**, ω are 3D vector fields)

《ロ》 《御》 《君》 《君》 《君

 OQ

Route A to Nonhydrostatic Euler: add *w*-eq to hydrostatic eqs.

$$
\partial_t v_h + \omega_z \vec{e}_z \times v_h + w \partial_z v_h + \nabla_h (p + \frac{|v_h|^2}{2}) = 0,
$$

$$
\partial_t w + (v, w) \cdot \nabla w + \partial_z p = 0,
$$

Route B to Nonhydrostatic Euler: 3D vector-invariant

 $\partial_t \mathbf{v} + \omega \times \mathbf{v} + \nabla \big(\boldsymbol{\rho} + \frac{|\mathbf{v}|^2}{2} \big)$ $\frac{|\mathbf{a}|^2}{2}$ = 0 (**v**, ω are 3D vector fields)

- **Route A:** easy to implement, breaks beauty of Euler equation. *(no consistent vorticity eq., energetics presumably impossible...)*
- **Route B** challenge is discrete exterior product ω × **v**

Strategy: we go for Route B

- Focus on inviscid case and get conservation properties
- ² Incorporate dissipation via *explicit dissipation, upwind-biased . . .*

Incompressible Euler Equations

$$
\partial_t \bm{v} + \omega \times \bm{v} + \nabla \big(\bm{\rho} + \tfrac{|\bm{v}|^2}{2} \big) = 0, \quad \text{div} \bm{v} = 0
$$

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 $\circledcirc \circledcirc \circledcirc$

Incompressible Euler Equations

$$
\partial_t \bm{v} + \omega \times \bm{v} + \nabla \big(\bm{\rho} + \tfrac{|\bm{v}|^2}{2} \big) = 0, \quad \text{div} \bm{v} = 0
$$

Advection - Continuous Cross Product

horiz. v-equation:
$$
(\omega \times \mathbf{v})|_h = \begin{pmatrix} \omega_y v_z - \omega_z v_y \\ \omega_z v_x - \omega_x v_z \end{pmatrix},
$$

\nvert. v-equation:
$$
(\omega \times \mathbf{v})|_v = \omega_h \cdot \mathbf{v}_h^{\perp} = \begin{pmatrix} \omega_x v_y - \omega_y v_x \end{pmatrix}.
$$

- blue/Hydrostatic: Cross-product terms with vertical vorticity ω*^z*
- red/Nonhydrostatic:Cross-product terms with horiz. vorticity ω*^h*
- $\bullet \rightarrow$ we have blue we need red

We need 3D vorticity vector (ω_h , ω_z) *and construct missing* ω_h *via Stokes Theorem*

Horizontal component of vorticity vector - continuous

$$
\omega_h := \text{curl}_h \mathbf{v} = \begin{pmatrix} \omega_x \\ \omega_y \end{pmatrix} = \begin{pmatrix} \partial_y v_z - \partial_z v_y \\ \partial_z v_x - \partial_x v_z \end{pmatrix}
$$

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

We need 3D vorticity vector (ω_h , ω_z) *and construct missing* ω_h *via Stokes Theorem*

Horizontal component of vorticity vector - continuous

$$
\omega_h := \text{curl}_h \mathbf{v} = \begin{pmatrix} \omega_x \\ \omega_y \end{pmatrix} = \begin{pmatrix} \partial_y v_z - \partial_z v_y \\ \partial_z v_x - \partial_x v_z \end{pmatrix}
$$

Three Observations

- 1 Prismatic grid: 2D horizontal \times 1D vertical
- ² Dual prism is shifted horizontally and vertically
- ³ Vertical faces are rectangles !

目

 OQ

イロト イ部ト イミト イモト

Horizontal component of vorticity vector $ω_{\partial \hat{P}}$ via Stokes

$$
\omega_h \underbrace{\sim\sim\rightarrow}_{\text{by Stokes}} \quad \text{curl}_h u_{\partial P} := w_{K,k+1/2} + v_{e,k} - w_{L,k+1/2} - v_{e,k+1}
$$

ㅋ ロ > → (包)> → 코 > → 코 >

 OQ

This defines

- discrete 3D curl-operator: **curl***u*[∂]*^P* = (**curl***hu*[∂]*P*, **curl***vu*[∂]*P*)
- vorticity vector at faces of dual prism ω[∂]*P*^ˆ := (ω*h*, ω*^v*)

$$
\begin{pmatrix}\n\omega_y v_z - \omega_z v_y \\
\omega_z v_x - \omega_x v_z \\
\omega_y v_y - \omega_y v_x\n\end{pmatrix} \rightsquigarrow \omega_{\partial} \rho \star u_{\partial} \rho := \begin{pmatrix}\n\hat{\mathcal{P}}_h^{\dagger}(\omega_z \hat{\mathcal{P}}_h v) - \mathcal{P}_z \mathcal{P}^T(w \tilde{\mathcal{P}}_h \omega_h) \\
\hat{\mathcal{P}}_h \omega_h \cdot \mathcal{P} \mathcal{P}_z^T v\n\end{pmatrix}
$$

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

the secret sauce

P,Pˆ,P˜ are *Hilbert space compatible reconstructions*

Kernel of Differential Operators

- **i grad** $p = 0$ if and only if p is constant
- **ii** curl $v = 0$ if and only if $v = \text{grad } p$
- **i div** $v = 0$ if and only if $v = \text{curl}^T u$.

Discrete Biot-Savart:

From given $\omega \in \mathcal{H}_{\hat{V}}$ the velocity $u_{\partial P} \in \mathcal{H}_{\partial P}$ with **div** $\mathcal{M} u_{\partial P} = 0$, is recovered by solving Laplace equation

 $\mathsf{div}\mathcal{M}$ grad $\mathsf{u}_{\partial P} = \mathsf{curl}^{\mathsf{T}}\omega.$

세 미 세 세 레 메 세 프 메 세 프 메 니 프 OQ

Cont. Velocity Space & Discrete Degrees of Freedom on Prism Q

\n- \n
$$
\mathbb{F}(Q) := \{ f \in H_{div}(Q) \cap H_{rot}(Q) : \text{div } f \in \mathbb{P}_0(Q), \text{curl } f = 0, f|_e \cdot \mathbf{n}_e \in \mathbb{P}_0(Q) \, \forall e \in \partial Q \},
$$
\n
\n- \n
$$
\mathsf{dof}_{\mathbb{F}(Q)}(f) := \Pi f := \frac{1}{|e|} \int_e f \cdot \mathbf{n}_e \, ds, \quad \forall e \in \partial Q.
$$
\n
\n

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 $\begin{picture}(160,170) \put(0,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\makebox(0,0){φ}} \put(150,0){\make$

Cont. Velocity Space & Discrete Degrees of Freedom on Prism Q

•
$$
\mathbb{F}(Q) := \{f \in H_{div}(Q) \cap H_{rot}(Q) : div f \in \mathbb{P}_0(Q), curl f = 0,
$$

 $f|_e \cdot \mathbf{n}_e \in \mathbb{P}_0(Q) \forall e \in \partial Q\},\$

•
$$
dot_{\mathbb{F}(Q)}(f) := \Pi f := \frac{1}{|e|} \int_e f \cdot \mathbf{n}_e ds, \quad \forall e \in \partial Q.
$$

Theorem

Discrete DoF's above are unisolvent, i.e. they characterize uniquely the respective continuous virtual element space.

 OQ

세 미 세 세 레 메 세 프 메 세 프 메 니 프

Numerical Disgression II: Virtual Finite-Elements - Scalar Products &

Reconstructions

Reconstructions of disc. DoF via local PDEs

Given discrete velocity dof's *v^e* ∈ ∂*Q*. Define continuous function $\tilde{v} := \mathcal{P}v$ on *Q* as solution of local div-curl problem

세 미 세 세 메 페 세 코 페 세 코 페 기 코

 OQ

Reconstructions

Reconstructions of disc. DoF via local PDEs

Given discrete velocity dof's *v^e* ∈ ∂*Q*. Define continuous function $\tilde{v} := \mathcal{P}v$ on Q as solution of local div-curl problem

> $div\tilde{v} = \textbf{div}v$, on *Q*, *curl* $\tilde{v} = 0$, on *Q*, $\tilde{v} \cdot \mathbf{n}_e = v_e$ on ∂Q .

Scalar Product on Discrete Velocity Space in Terms of **Reconstructions**

$$
\langle u, v \rangle_{\mathbb{F}(Q)} := \int_Q \mathcal{P} u \cdot \mathcal{P} v \, dx
$$

$$
\int_{\Omega} \mathcal{P} u \cdot \mathcal{P} v \, dx = \sum_{Q \in \mathcal{C}} |Q| \mathcal{P} u_Q \cdot \mathcal{P} v_Q,
$$

イロト イ部ト イミト イモト \equiv OQ

Numerical Disgression III: Virtual Finite-Elements - Scalar Products &

Reconstructions

Pressure & Vorticity

For pressure and vorticity spaces similar scalar products via reconstructions via local div-curl PDEs.

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君 》

 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

Numerical Disgression III: Virtual Finite-Elements - Scalar Products &

Reconstructions

Pressure & Vorticity

For pressure and vorticity spaces similar scalar products via reconstructions via local div-curl PDEs.

Fundamental Lemma on Reconstructions

Let $\mathcal{P}: v_e \to \mathcal{P}v \in \mathbb{F}(Q)$ be a reconstruction such that

- $\mathcal P$ is the right-inverse of projection $\Pi f := \frac{1}{|e|} \int_{e} f \cdot \textbf{n}_e \, d\theta$
- \odot \mathcal{P} is first-order accurate
- P commutes with continuous differential operators *grad*, *div*, *curl*
- Reconstructed functions are orthogonal to linear polynomials on *Q* with zero mean
- \bullet $\mathcal P$ has a local stencil

 \textsf{T} hen it holds $\int_Q \mathcal{P} \mathsf{v} \cdot \mathsf{e}_i d\mathsf{x} = \sum_{e \in \partial Q} \mathsf{v}_e |e|(\mathsf{x}_e - \mathsf{x}_Q) \cdot \mathsf{e}_i.$

(Analogous results for $\hat{\mathcal{P}}$ *,* $\tilde{\mathcal{P}}$ *)*

Reconstructions

Reconstructions

- Div-Curl- PDE are actually never solved.
- Reconstructions have an explicit & computable form.
- We need three Reconstructions
	- \bullet P: face dof \rightarrow inside primal 3D prism
	- $\hat{\mathcal{P}}$: face dof \rightarrow inside 3D dual prism
	- $\tilde{\mathcal{P}}_h$: edge dof \rightarrow inside 2D primal cell
	- $\mathcal{M} := \mathcal{P}^{\mathcal{T}}\mathcal{P}$

End of Numerical Disgression - Back to Euler Equations

세 미 세 세 레 메 세 프 메 세 프 메 니 프

 OQ

Incompressible Euler

$$
\begin{aligned}\n\bullet \langle \frac{d}{dt} \mathcal{M} u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \omega_{\partial \hat{P}} \star u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} \\
&+ \langle \mathcal{M} \mathbf{grad}(p + \frac{|\mathcal{P} u_{\partial P}|_{\mathbb{R}^3}^2}{2}), \phi \rangle_{\mathcal{H}_{\partial P}} = 0, \ \forall \phi \in \mathcal{H}_{\partial P}, \\
\bullet \mathbf{div} \mathcal{M} u_{\partial P} = 0.\n\end{aligned}
$$

イロト イ部ト イミト イモト

 \equiv

 $\circledcirc \circledcirc \circledcirc$

Incompressible Euler

$$
\begin{aligned}\n\bullet \langle \frac{d}{dt} \mathcal{M} u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \omega_{\partial \hat{P}} \star u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} \\
&+ \langle \mathcal{M} \mathbf{grad}(p + \frac{|\mathcal{P} u_{\partial P}|_{\mathbb{R}^3}^2}{2}), \phi \rangle_{\mathcal{H}_{\partial P}} = 0, \ \forall \phi \in \mathcal{H}_{\partial P}, \\
\bullet \mathbf{div} \mathcal{M} u_{\partial P} = 0.\n\end{aligned}
$$

Pressure Recovery

Pressure is recovered from $u_{\partial P} \in \mathcal{H}_{\partial P}$ by solving Laplace equation $\textsf{div}\mathcal{M}$ grad $\rho=-\textsf{div}\mathcal{M}$ grad $\big(\frac{|\mathcal{P}_3\mathcal{U}_\partial P|^2_{\mathbb{R}^3}}{2}\big)-\textsf{div}\mathcal{L}(\omega_{\partial\hat{P}},\mathcal{U}_{\partial P})$

 OQ

세 미 세 세 메 페 세 코 페 세 코 페 기 코

Theorem (Well-Posedness of Semi-Discrete Euler Equations)

Let *a time interval* [0, *T*] *and initial conditions* $u_0 \in \mathcal{H}_{\partial P}^{div}$ *be given. Then there exist for t* ∈ [0, *T*] *a unique solution u*_{∂P}(*t*) ∈ $\mathcal{H}_{\partial P}$ *of the discrete Euler equations.*

(Proof by Picard's theorem for ODE for short time and extension to long time via energy conservation.)

④ 미 시 - 이 - 이 - 이 - 이 - 한 - 이 - 한 - 이 - 한

 OQ

Theorem (Well-Posedness of Semi-Discrete Euler Equations)

Let *a time interval* [0, *T*] *and initial conditions* $u_0 \in \mathcal{H}_{\partial P}^{div}$ *be given. Then there exist for t* ∈ [0, *T*] *a unique solution u*_{∂P}(*t*) ∈ $\mathcal{H}_{\partial P}$ *of the discrete Euler equations.*

(Proof by Picard's theorem for ODE for short time and extension to long time via energy conservation.)

세 미 세 세 레 메 세 프 베 세 프 베 니 프

 OQ

Well-Posedness of Semi-Discrete Navier-Stokes

Proof translates to Navier-Stokes equations, with dissipation given by $\mathcal{D}(v) := \textbf{curl}^{\mathcal{T}}(\nu \textbf{curl} \mathsf{u}_{\partial P}).$

Linear Momentum

Let *u_{∂P}* ∈ $\mathcal{H}_{\partial P}^{divM}$ be a solution of the Euler equation. Then the linear μ_{p} momentum $\mathcal{I} := \langle \mathcal{P}^T \mathcal{P} u_{\partial P}, 1 \rangle_{\mathbf{H}_p}$ satisfies $\frac{d}{dt} \mathcal{I} = 0.$

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君 》

 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

Linear Momentum

Let *u*_∂*P* ∈ $\mathcal{H}_{\partial P}^{divM}$ be a solution of the Euler equation. Then the linear momentum $\bm{\mathcal{I}} := \left\langle \bm{\mathcal{P}}^{\intercal}\bm{\mathcal{P}}\bm{\mathcal{U}}_{\partial\bm{\mathcal{P}}}, \bm{1} \right\rangle_{\bm{\mathsf{H}}_{\bm{\mathcal{P}}}}$ satisfies $\frac{d}{dt} \mathcal{I} = 0.$

Angular Momentum $L := \vec{x} \times \vec{u}$

Question: How to define $L := \vec{x} \times \vec{u}$ for staggered $\vec{u} = (v_h, w)$? \bullet

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 $\begin{array}{c} \curvearrowleft \circledcirc \circledcirc \circledcirc \end{array}$

○ Observation: Vector product $\vec{\omega} \times \vec{\mu} \sim \omega_{\hat{\partial} \hat{P}} \star u_{\hat{\partial} P}$

Linear Momentum

Let *u*_∂*P* ∈ $\mathcal{H}_{\partial P}^{divM}$ be a solution of the Euler equation. Then the linear momentum $\bm{\mathcal{I}} := \left\langle \bm{\mathcal{P}}^{\intercal}\bm{\mathcal{P}}\bm{\mathcal{U}}_{\partial\bm{\mathcal{P}}}, \bm{1} \right\rangle_{\bm{\mathsf{H}}_{\bm{\mathcal{P}}}}$ satisfies $\frac{d}{dt} \mathcal{I} = 0.$

Angular Momentum $L := \vec{x} \times \vec{u}$

- Question: How to define $L := \vec{x} \times \vec{u}$ for staggered $\vec{u} = (v_h, w)$?
- Observation: Vector product $\vec{\omega} \times \vec{\mu} \sim \omega_{\hat{\partial} \hat{P}} \star u_{\hat{\partial} P}$

Angular Momentum - Definition and Conservation

Define discrete angular momentum:

$$
\ell(u_{\partial P}) := \vec{x} \star u_{\partial P},
$$

where \vec{x} is coordinate vector of the position of vorticity at dual prism faces. Then

$$
\frac{d}{dt}\langle \ell(u_{\partial P}),1\rangle=0
$$

دیکی مسلم کی مسلم

Theorem (Energy Conservation)

The solution $u_{\partial P}(t) \in \mathcal{H}_{\partial P}^{\text{div}}$ *of the discrete incompressible Euler equations conserves kinetic energy:*

$$
\frac{d}{dt}E^{kin}(t)=0, \quad E^{kin}(t):=||\mathcal{P}_3 u_{\partial P}(t)^2||_{\mathbf{H}_P}
$$

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

2D: *Energy and enstrophy conservation.*

Theorem (Energy Conservation)

The solution $u_{\partial P}(t) \in \mathcal{H}_{\partial P}^{\text{div}}$ *of the discrete incompressible Euler equations conserves kinetic energy:*

$$
\frac{d}{dt}E^{kin}(t)=0, \quad E^{kin}(t):=||\mathcal{P}_3 u_{\partial P}(t)^2||_{\mathbf{H}_{\mathcal{P}}}
$$

2D: *Energy and enstrophy conservation.*

Helicity: Inner Product of Velocity & Vorticity

$$
\mathcal{H} := \int_{\Omega} \mathbf{v} \cdot \omega \, dx \qquad | \qquad \mathbf{H} := \left\langle \hat{\mathcal{P}} \mathbf{v} \, \omega_z, \mathbf{1} \right\rangle_{\mathcal{H}_{\hat{V}}} + \left\langle \mathbf{w} \tilde{\mathcal{P}}_h \omega_h, \mathbf{1} \right\rangle_{\mathcal{H}_P}
$$

 OQ

세 미 세 세 레 메 세 프 베 세 프 베 니 프

Theorem (Energy Conservation)

The solution $u_{\partial P}(t) \in \mathcal{H}_{\partial P}^{\text{div}}$ *of the discrete incompressible Euler equations conserves kinetic energy:*

$$
\frac{d}{dt}E^{kin}(t)=0, \quad E^{kin}(t):=||\mathcal{P}_3 u_{\partial P}(t)^2||_{\mathbf{H}_{\mathcal{P}}}
$$

2D: *Energy and enstrophy conservation.*

Helicity: Inner Product of Velocity & Vorticity

$$
\mathcal{H} := \int_{\Omega} \mathbf{v} \cdot \boldsymbol{\omega} \, d\mathbf{x} \qquad | \qquad \mathbf{H} := \left\langle \hat{\mathcal{P}} \mathbf{v} \, \omega_{z}, \mathbf{1} \right\rangle_{\mathcal{H}_{\hat{V}}} + \left\langle \mathbf{w} \tilde{\mathcal{P}}_{h} \omega_{h}, \mathbf{1} \right\rangle_{\mathcal{H}_{P}}
$$

Theorem (Helicity Conservation)

The solution u[∂]*P^k* (*t*) ∈ H*div* ∂*P of the discrete* **3D** *incompressible Euler equations conserves helicity:*

$$
d_t\mathbf{H}=0.
$$

(Proof by combining equations for vorticity and velocity and suitable test functions in discrete weak form.)《ロ》 《御》 《君》 《君》 《君 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

Time stepping - Implicit

$$
\langle \frac{\mathcal{M}(u_{\partial P}^{n+1} - u_{\partial P}^{n})}{\Delta t}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \omega_{\partial P}^{n+1/2} \star u_{\partial P}^{n+1/2}, \phi \rangle_{\mathcal{H}_{\partial P}}
$$

+ $\langle \mathcal{M}\text{grad}(p^{n+1/2} + \frac{|\mathcal{P}u_{\partial P}^{n+1/2}|_{\mathbb{R}^3}}{2}), \phi \rangle_{\mathcal{H}_{\partial P}} = \langle f^{n+1/2}, \phi \rangle_{\mathcal{H}_{\partial P}},$

$$
\text{div}\mathcal{M}u_{\partial P}^{n+1} = 0,
$$

where $u_{\partial P}^{n+1/2} := \frac{1}{2}(u_{\partial P}^{n+1} + u_{\partial P}^{n})$

イロト イ部ト イミト イモト

 \equiv

 $\circledcirc \circledcirc \circledcirc$

Theorem

 \bullet *Let* ∆*t* > 0 *be the time step size and* $u_{\partial P}^0$ *inH* $_{\partial P}^{divM}$ *initial conditions. Then a unique solution exists* (*u n* ∂*P* , *p n*) *of incompressible Euler with the following properties:*

↑ $(u_{\partial P}^n, p^n)$ conserves global kinetic energy, $E^{kin}(u_{\partial P}^n) = E^{kin}(u_{\partial P}^0)$

∂ $(u_{\partial P}^n, p^n)$ conserves linear momentum $\mathcal{I}(u_{\partial P}^n) = \mathcal{I}(u_{\partial P}^0)$ and $\mathcal{L}(u_{\partial P}^n) = \ell(u_{\partial P}^0)$

 $\mathcal{P}\left(\bm{\mathit{u}}_{\partial\bm{\mathit{P}}}^{n},\bm{\mathit{p}}^{n}\right)$ conserves vorticity $\left\langle \omega_{\partial\hat{\bm{\mathit{P}}}}^{n},1\right\rangle _{\mathcal{H}_{\hat{\bm{\mathit{V}}}}}=\left\langle \omega_{\partial\hat{\bm{\mathit{P}}}}^{0},1\right\rangle _{\mathcal{H}_{\hat{\bm{\mathit{V}}}}}.$

$$
\text{4} \ \ (u_{\partial P}^n, p^n) \text{ conserves helicity } \mathbf{H}(u_{\partial P}^n) = \mathbf{H}(u_{\partial P}^0)
$$

⁵ (*u n* ∂*P* , *p n*) *is reversible in time*

(Proof: Schauder fix point theorem, differentiability of mapping for uniqueness. Conservation properties rely on implicit time stepping.)

Navier-Stokes Equations

Proof applies to Navier-Stokes, without conservation props.

Euler-Boussinesq Equations - Incompressible & Varying Density

Now allow the density to vary - but not to compress

Incompressible Euler-Boussinesq Equations

$$
\partial_t \mathbf{v} + \omega \times \mathbf{v} + \nabla (\rho + \frac{|\mathbf{v}|^2}{2}) = g \rho \vec{\mathbf{e}}_z, \quad \text{div}\mathbf{v} = 0
$$

$$
\partial_t \rho + \text{div}(\rho \mathbf{v}) = 0.
$$

イロト イ部ト イミト イミトー

 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

 \equiv

Now allow the density to vary - but not to compress

Incompressible Euler-Boussinesq Equations

$$
\partial_t \mathbf{v} + \omega \times \mathbf{v} + \nabla (\rho + \frac{|\mathbf{v}|^2}{2}) = g \rho \vec{e}_z, \quad \text{div}\mathbf{v} = 0
$$

$$
\partial_t \rho + \text{div}(\rho \mathbf{v}) = 0.
$$

Euler-Boussinesq

$$
\bullet \langle \frac{d}{dt} \mathcal{M} u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \omega_{\partial P} \star u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \mathcal{M} \textbf{grad}(p + \frac{|\mathcal{P} u_{\partial P}|_{\mathbb{R}^3}^2}{2}), \phi \rangle_{\mathcal{H}_{\partial P}} = \langle g_{\rho} \vec{e}_z, \phi \rangle_{\mathcal{H}_{P}} \bullet \textbf{div} \mathcal{M} u_{\partial P} = 0,
$$

$$
\bullet \left\langle \partial_t \rho, \psi \right\rangle_{\mathcal{H}_P} + \left\langle \textbf{div}(\mathcal{P}^{\mathcal{T}}(\rho \mathcal{P} \mathsf{v})), \psi \right\rangle_{\mathcal{H}_P} = 0.
$$

Theorem (Well-Posedness of Semi-Discrete Euler-Boussinesq)

i) *A unique solution* $u_{\partial P}(t) \in \mathcal{H}_{\partial P}^{\mathsf{div}}, \rho \in \mathcal{H}_P$ *to discrete Euler-Boussinesq equations exists ii*) *and it has the following properties*

Energy Conservation: *The sum of kinetic and potential energy is conserved*

$$
\frac{d}{dt}(E^{kin}+E^{pot})(t)=0, \quad E^{pot}:=g_{\rho}Qw
$$

Helicity Conservation *The solution* $u_{\partial P_k}(t) \in \mathcal{H}_{\partial P}^{\text{div}}$ *of the discrete* **3D** *incompressible Euler equations satisfies*

 d_t **H** = $F(\Phi)$. (Φ *geopotential*)

세 미 세 세 메 페 세 코 페 세 코 페 기 코

 OQ

PV - Continuous:

$$
\mathcal{PV}:=\omega\cdot\nabla\rho
$$

PV - Discrete: Inner Product of ω and **grad**ρ

$$
\text{PV}(\textbf{u}_{\partial P})|_{\hat{P}}:=\!\! \left\langle \omega_{z}\,\hat{\mathcal{P}}_{h}\text{grad}\rho,1\right\rangle_{\textbf{H}_{\partial\hat{P}^{=}}}+\left\langle \omega_{h}\,\textbf{D}_{\textbf{z}}\rho,1\right\rangle_{\mathcal{H}_{\partial\hat{P}^{||}}}
$$

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

PV - Continuous:

$$
\mathcal{PV}:=\omega\cdot\nabla\rho
$$

PV - Discrete: Inner Product of ω and **grad**ρ

$$
\text{PV}(\textbf{u}_{\partial P})|_{\hat{P}}:=\!\! \big\langle \omega_{z} \, \hat{\mathcal{P}}_{h} \textbf{grad}_{\mathcal{P}}, \mathbf{1} \big\rangle_{\textbf{H}_{\partial \hat{P}^{=}}} + \big\langle \omega_{h} \, \textbf{D}_{\textbf{z} \mathcal{P}}, \mathbf{1} \big\rangle_{\mathcal{H}_{\partial \hat{P}^{||}}}
$$

Potential Vorticity Conservation

Let *u*∂*^P* ∈ H*divM* ∂*P* be a solution of the Euler-Boussinesq equations. Then

$$
\frac{d}{dt}\big\langle {\mathsf{PV}}, {\mathsf{1}} \big\rangle_{\mathcal{H}_{\hat P}} = 0.
$$

Proof by combining equations for vorticity and for density gradient.

세 미 세 세 레 메 세 프 메 세 프 메 니 프 OQ

Theorem - Implicit Time stepping

Let $\Delta t > 0$ be the time step size. Let initial conditions $u_{\partial P}{}^0 \in \mathcal{H}_{\partial P}^{divM}$ be given. Then there exists a unique solution $(u_{\partial P}^n, p^n)$ of Euler-Bousinesq with the following properties:

- $P_{\alpha}(u_{\partial P}^n,p^n)$ conserves global kinetic energy, $E^{\mathsf{kin}}(u_{\partial P}^n)=E^{\mathsf{kin}}(u_{\partial P}^0)$
- ∂ $(u_{\partial P}^n, p^n)$ conserves linear momentum $\mathcal{I}(u_{\partial P}^n) = \mathcal{I}(u_{\partial P}^0)$
- $\mathbf{P} = \mathbf{H}(u_{\partial P}^n, \rho^n)$ conserves helicity $\mathbf{H}(u_{\partial P}^n) = \mathbf{H}(u_{\partial P}^0)$
- Ψ $(u_{\partial P}^n, p^n)$ conserves the potential vorticity ${\sf PV}(u_{\partial P}^n) = {\sf PV}(u_{\partial P}^0)$

세 미 세 세 메 페 세 코 베 세 코 베 기 코 세

 $\begin{array}{c} \curvearrowleft \circledcirc \circledcirc \circledcirc \end{array}$

Small Aspect Ratio ϵ

- Thin domain: Ω $_{\epsilon}=[-1,1]^2\times [-\epsilon,\epsilon]$ transform into $\Omega:=[-1,1]^3$
- Transformation:

$$
\mathbf{v}_{\epsilon}(x, y, z, t) := \mathbf{v}(x, y, \epsilon z, t), \quad p_{\epsilon}(x, y, z, t) := p(x, y, \epsilon z, t)
$$

$$
w_{\epsilon}(x, y, z, t) := \frac{1}{\epsilon} w(x, y, \epsilon z, t).
$$

Scaled Euler Equations

$$
\partial_t \mathbf{v}_{\epsilon} + (\text{curl}\mathbf{v}_{\epsilon} \times \mathbf{v}_{\epsilon})|_{h} + \nabla_h \frac{|\mathbf{v}_{\epsilon}|^2}{2} + \nabla_h p_{\epsilon} = 0,
$$

$$
\epsilon^2 \left\{ \partial_t w_{\epsilon} + (\text{curl}\mathbf{v}_{\epsilon} \times \mathbf{v}_{\epsilon})|_{v} + \partial_z \frac{|\mathbf{v}_{\epsilon}|^2}{2} \right\} + \partial_z p_{\epsilon} = 0,
$$

$$
\text{div}\,\mathbf{v}_{\epsilon} + \partial_z w_{\epsilon} = 0.
$$

Relation Hydrostatic & Nonhydrostatic: Hydrostatic Limit

Scaled Euler Equations
$$
\mathbf{v}_{\epsilon} = (v_1, v_2, v_3), v_i = v_i(x, y, z, t)
$$

$$
\partial_t \mathbf{v}_{\epsilon} + (\text{curl} \mathbf{v}_{\epsilon} \times \mathbf{v}_{\epsilon})|_h + \nabla_h \frac{|\mathbf{v}_{\epsilon}|^2}{2} + \nabla_h p_{\epsilon} = 0,
$$

$$
\epsilon^2 \left\{ \partial_t w_{\epsilon} + (\text{curl} \mathbf{v}_{\epsilon} \times \mathbf{v}_{\epsilon})|_v + \partial_z \frac{|\mathbf{v}_{\epsilon}|^2}{2} \right\} + \partial_z p_{\epsilon} = 0,
$$

$$
\text{div } \mathbf{v}_{\epsilon} + \partial_z w_{\epsilon} = 0.
$$

Hydrostatic Euler Equations $\mathbf{v} = (v_1, v_2), v_i = v_i(x, y, z, t)$

$$
\partial_t \mathbf{v} + (\text{curl}\mathbf{v} \times \mathbf{v})|_h + \nabla_h \frac{|\mathbf{v}|^2}{2} + \nabla_h p = 0,
$$

\n
$$
\partial_z p = 0,
$$

\n
$$
\text{div}\,\mathbf{v}_h + \partial_z w = 0.
$$

What happens for $\epsilon \to 0$?

Discrete Scaled Euler Equations

$$
\bullet \ \big\langle \frac{d}{dt}\mathcal{M}_h v^\epsilon + \omega_{\partial \hat{P}} \star u_{\partial P} \big|_h^{nh} + \mathcal{M}_h \text{grad}_n \big(\frac{E_{kin}^{nh}}{2} + p^\epsilon \big), \phi_h \big\rangle_{\mathcal{H}_{\mathcal{F}}} = 0,
$$

$$
\bullet\ \big\langle \epsilon^2\bigg\{\frac{d}{dt}w^\epsilon+\omega_{\partial\hat P}\star u_{\partial P}|_{z}^{nh}+D_{\bf z}\big(\frac{|\mathcal P u_{\partial P}^\epsilon|^2}{2}\big)\bigg\}+D_{\bf z}\rho^\epsilon,\phi_{\bf v}\big\rangle_{\mathcal H_P}=0,
$$

$$
\bullet\ \textbf{div}_h \mathcal{M}_h v^\epsilon + \textbf{div}_v w^\epsilon = 0,
$$

Discrete Hydrostatic Euler Equations

$$
\bullet \langle \frac{d}{dt} \mathcal{M}_h v + \omega_{\partial \rho} \star u_{\partial P} \vert_h^{hyd} + \mathcal{M}_h \text{grad}_n (p + \frac{E_{kin}^{hyd}}{2}), \phi_h \rangle_{\mathcal{H}_{\mathcal{F}}} = 0,
$$

$$
\bullet\,\left\langle \mathcal{P}_{z}\textbf{D}_{\textbf{z}}\textbf{p},\phi_{v}\right\rangle _{\mathcal{H}_{P}}=0,
$$

$$
\bullet \ \mathbf{div}_h \mathcal{M}_h v + \mathbf{div}_v w = 0,
$$

What happens for $\epsilon \to 0$?

hyd

Theorem

In the aspect ratio limit, $\epsilon \rightarrow 0$, *the solution* ($u_{\partial P}^{nh}$, p^{nh}) *of the (nonhydrostatic) Euler equations converges to the solution* ($u_{∂P}^{hyd}$, p^{hdy}) *of the hydrostatic Euler equations.*

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君 》

 $\begin{picture}(16,15) \put(0,0){\line(1,0){15}} \put(10,0){\line(1,0){15}} \put(10,0){\line(1$

Theorem

In the aspect ratio limit, $\epsilon \rightarrow 0$, *the solution* ($u_{\partial P}^{nh}$, p^{nh}) *of the (nonhydrostatic) Euler equations converges*

to the solution ($u_{∂P}^{hyd}$, p^{hdy}) *of the hydrostatic Euler equations.*

Proof

- Consider equation for the difference $\delta u := u_{\partial P}^{nh} u_{\partial P}^{hyd}$.
- Analyze difference of nonlinear terms
	- $\omega_{\partial P} \star u_{\partial P}$ |^{nh} − ω_∂ρ $\star u_{\partial P}$ ^{hyd} $w^{\alpha} \partial P \wedge d\partial P|_{h}$
 $w^{\alpha}P_{h}$ Curl_h $u^{\alpha h} - w^{\alpha}P_{h}$ D_z $u^{\alpha h}$ \sim curl $_h$ *u^{nh}* − **D**_z*u^{nh}</sub>*
- Scalar product of difference equation with δ*u* and energy estimate

 $\bullet \rightarrow$ Horizontal **curl**_{*h*} is crucial for estimate

Theorem is discrete version of PDE result by J. Li and E.S. Titi (2019)

Let $G = \Delta$ be a triangular grid.

$$
\mathsf{Velocity}: \langle \frac{\partial}{\partial t} M_h v, \phi \rangle + \langle \hat{\mathcal{P}}^T[(f+\omega)\hat{\mathcal{P}}v], \phi \rangle + \langle \mathcal{P}^T \mathcal{Q}(w\mathbf{D}_z \mathcal{P}v), \phi \rangle + \langle \mathcal{M}\mathbf{grad}[\frac{|\mathcal{P}v|_{\mathbb{R}^3}^2}{2}], \phi \rangle + \langle \mathcal{P}^T \mathcal{P}\mathbf{grad}(g\eta + p_{hyd}), \phi \rangle - \langle Lv, \phi \rangle = \langle \mathcal{F}_v, \phi \rangle \nIncompress: : $\mathbf{div}_h \mathcal{M}_h v + \mathbf{D}_z w = 0$
$$

Free Surface:
$$
\langle \frac{\partial \eta}{\partial t}, \psi \rangle + \langle \text{div}[\sum_{k=0}^{k=N_{top}} \mathcal{P}^T(\Delta z_k \mathcal{P} v_k)], \psi \rangle = 0
$$

\nTrace:
$$
\langle \frac{\partial C}{\partial t}, \psi \rangle - \langle \text{div}^{\text{up}} \mathcal{P}^T(C \mathcal{P} v), \psi \rangle + \langle LC, \psi \rangle
$$

\n
$$
= \langle \mathcal{F}_C, \psi \rangle
$$

P. K. Formulation of an Unstructured Grid Model for Global Ocean Dynamics (J. Comp. Phys. 339 (2017))

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

Theorem

Let a vertical mixing scheme of PP-type be active.

Then the semi-discrete hydrostatic Boussinesq ICON-O equations with a free surface have a unique solution, provided the forcing is sufficiently "nice".

Corollary

The same statement applies if the mesoscale eddy parametrization of Gent-McWilliams-Redi is included and discretized by structure-preserving numerics ^a .

a P. K. A structure-preserving discretization of ocean parametrizations on unstructured grids (Ocean Modell. (2018))

Now allow the density to vary and to compress

Compressible Euler: Momentum vs Velocity

Momentum:	\n $\partial_t \rho + \text{div}(\rho \mathbf{v}) = 0,$ \n
\n $\partial_t(\rho \mathbf{v}) + \rho \text{curl } \mathbf{v} \times \mathbf{v} + \rho \nabla \left(\frac{ \mathbf{v} ^2}{2} + \Phi\right) + \mathbf{v} \text{div}(\rho \mathbf{v}) + \nabla p = 0,$ \n	
\n $\partial(\rho e) + \text{div}(\mathbf{v}(\rho e + p)) = 0,$ \n	
\n Energy:	\n $\rho e := \frac{ \mathbf{v} ^2}{2} + c_V T + \rho \Phi,$ \n $\quad \text{EOS}: p = \rho T.$ \n
\n Velocity: \n $\partial_t \mathbf{v} + \text{div}(\rho \mathbf{v}) = 0,$ \n	
\n $\partial_t \mathbf{v} + \text{curl } \mathbf{v} \times \mathbf{v} + \nabla \left(\frac{ \mathbf{v} ^2}{2} + \Phi\right) + \frac{\nabla p}{\rho} = 0,$ \n	
\n $\partial(\rho e) + \text{div}(\mathbf{v}(\rho e + p)) = 0,$ \n	

We use velocity form in analogy with ICON-A. Similar results for momentum form.

Discrete Compressible Euler

$$
\bullet \langle \frac{d}{dt} \mathcal{M} u_{\partial P}, \phi \rangle_{\mathcal{H}_{\partial P}} + \langle \omega_{\partial \hat{P}} \star u_{\partial P} + \mathcal{M} \text{grad} \left(\frac{|\mathcal{P} u_{\partial P}|_{\mathbb{R}^3}^2}{2} \right), \phi \rangle_{\mathcal{H}_{\partial P}}
$$

$$
+ \langle \mathcal{P}^T \left(\frac{1}{\rho} \mathcal{P} \text{grad} \mathcal{P} \right) \rangle, \phi \rangle_{\mathcal{H}_{\partial P}} = \langle \mathcal{M} \text{grad} \Phi, \phi \rangle_{\mathcal{H}_{\partial P}},
$$

$$
\bullet \langle \partial_t \rho + \text{div}^{up} (\mathcal{P}^T (\rho \mathcal{P} u_{\partial P}), \psi \rangle_{\mathcal{H}_P} = 0,
$$

•
$$
\langle \partial_t (\rho \theta) + \text{div}(\mathcal{P}^T(\rho \theta \mathcal{P} u_{\partial P}), \psi \rangle_{\mathcal{H}_P} = 0,
$$

Theorem (Well-Posedness of Compressible Euler Equations)

Let a time interval [0, *T*] *and initial conditions*

•
$$
u_{\partial P}(t=0) = u_0
$$
, and $\theta(t=0) = \theta_0$

•
$$
\rho(t=0) = \rho_0
$$
 with $\rho_0 \geq c > 0$ be given.

Then there exist for t ∈ [0, *T*] *a unique solution u*[∂]*P*(*t*) *of the discrete compressible Euler equations.*

 OQ

We need to assume upwind advection for ρ *to avoid vacuum.*

Theorem

Solution u∂*P*(*t*) *of discrete compressible Euler equations satisfies*

Energy Conservation: *The sum of kinetic, potential and internal energy is conserved*

$$
\frac{d}{dt}(E^{kin}+E^{pot}+E^{int})(t)=0, \quad (E^{int}:=c_V\rho\theta)
$$

Helicity Conservation: *The helicity is conserved*

$$
d_t\mathbf{H}=0.
$$

세 미 세 세 레 메 세 프 메 세 프 메 니 프

 OQ

Isentropic Euler Equations with Pressure Equation $\partial_t p + \mathbf{v} \cdot \nabla p + \gamma p \, \text{div}(\mathbf{v}) = 0, \qquad (\gamma := \frac{c_v}{c_v})$ $\frac{c}{c_p}$ $\partial_t \mathbf{v} + \mathit{curl} \, \mathbf{v} \times \mathbf{v} + \nabla \big(\frac{|\mathbf{v}|^2}{2} \big)$ $\frac{|\mathbf{v}|^2}{2} + \Phi$) + $\frac{\nabla p}{\rho}$ $\frac{\rho}{\rho}=0.$

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ │ 호 │ ◆ 9,9,0°

Isentropic Euler Equations with Pressure Equation

$$
\partial_t \mathbf{p} + \mathbf{v} \cdot \nabla \mathbf{p} + \gamma \mathbf{p} \, \text{div}(\mathbf{v}) = 0, \qquad (\gamma := \frac{c_v}{c_p})
$$

$$
\partial_t \mathbf{v} + \text{curl} \, \mathbf{v} \times \mathbf{v} + \nabla \big(\frac{|\mathbf{v}|^2}{2} + \Phi \big) + \frac{\nabla \mathbf{p}}{\rho} = 0.
$$

Discrete Isentropic Euler Equations

$$
\bullet \left\langle \partial_t p + \text{div}[\mathcal{P}^{\mathcal{T}}(\gamma p)\mathcal{P} u_{\partial P}],1 \right\rangle_{\mathcal{H}_P} + \left\langle \gamma'p, \text{div}\mathcal{M} u_{\partial P} \right\rangle_{\mathcal{H}_P} = 0
$$

$$
\bullet\ \langle\frac{d}{dt}\mathcal{M}u_{\partial P},\phi\rangle_{\mathcal{H}_{\partial P}}+\langle\omega_{\partial \hat{P}}\star u_{\partial P}+\mathcal{M}\text{grad}\big(\frac{|\mathcal{P}u_{\partial P}|^2_{\mathbb{R}^3}}{2}\big),\phi\rangle_{\mathcal{H}_{\partial P}}\\+\langle\mathcal{P}^{\mathsf{T}}(\frac{1}{\rho}\mathcal{P}\text{grad}P)\big),\phi\rangle_{\mathcal{H}_{\partial P}}=\langle\mathcal{M}\text{grad}\Phi,\phi\rangle_{\mathcal{H}_{\partial P}},
$$

Relation Compressible-Incompressible: Mach Number Limit

Theorem

Compressible-Incompressible

- (*u* ϵ ∂*P* , *p* ϵ) *solution of compressible Euler eq.*
- (*u*[∂]*P*, *p*) *solution of incompressible Euler eq.*
- *well-prepared initial conditions:*

$$
\mathbf{div} u_{\partial P}^{\epsilon}(t=0) = \mathcal{O}(\epsilon), \quad p^{\epsilon}(t=0) = p(t=0) + \mathcal{O}(1)
$$

Then solution of compressible equations (*u*[∂]*^P* ϵ , *p* ϵ) *can be written as*

$$
u_{\partial P}^{\epsilon} = \underbrace{u + U}_{\text{slow part}} + \tilde{U} + \mathcal{O}(\epsilon), \qquad p^{\epsilon} = \underbrace{p + P}_{\text{slow part}} + \tilde{P} + \mathcal{O}(\epsilon),
$$

where

$$
\bullet
$$
 (U, P) solution to linearized incompressible Euler

•
$$
(\tilde{U}, \tilde{P})
$$
 solution to equations of linear acoustics
 $\partial_{tt} P' = \Delta_{\mathcal{M}} P'$, curl $U' = 0$ $(\Delta_{\mathcal{M}} u := \text{div} \mathcal{M} \text{grad} u)$.

(Proof by analysis of multiscale expansion w.r.t. ϵ*)*

Discrete version of classical PDE-results from Klainermann-Majda, Kreiss, Schochet. . . .

I will discuss the following topics

- ⁱ Incompressible Dynamics *(*∼ *ocean)*
- ii Compressible Dynamics *(*∼ *atmosphere)*
- **iii** Singular Limits *(relation between different equations)*

《 ロ 》 《 御 》 《 君 》 《 君 》 ○ 君

 OQ

iv Lessons learned

Lesson I: Grids do not matter

Observation

Discrete differential operators & reconstructions mesh-unaware

Consequence: Mesh-Independence

- Results valid for: triangular \triangle , hexagonal \heartsuit and rectangular \Box cells
- Results valid for mixed grids $\Box \triangle \odot \triangle \triangle \Box \Box$ or Delauny-Voronoi polygons.

 OQ

제 ロ 메 제 御 메 제 편 메 제 편 메 기 편 .

Lesson I: Grids do not matter

Observation

Discrete differential operators & reconstructions mesh-unaware

Consequence: Mesh-Independence

- Results valid for: triangular \triangle , hexagonal \heartsuit and rectangular \Box cells
- Results valid for mixed grids $\Box \triangle \odot \triangle \triangle \Box \Box$ or Delauny-Voronoi polygons.

Case of rectangular grids □

- Discrete differential operators become classical finite differences
- Reconstructions become familiar averages \bullet
- **Nonhydrostatic:** MAC method for Navier-Stokes \bullet (Harlow-Welch,1965)
- **Hydrostatic Boussinesq:** same velocity eq. as *NEMO*
	- Nonlinearity conserves 3D-Energy and in 2D energy & enstropy
	- This is again also valid for triangular and hexagonal meshes

$\sqrt{2}$ D Incompressible Euler: $\partial_t \omega +$ *v* ⋅ $\nabla \omega = 0$

$$
\circ \partial_t \triangle \psi + \mathcal{J}(\psi, \triangle \psi) = 0
$$

• stream function $v := \nabla^{\perp}\psi$, $\omega = \triangle \psi$ Jacobian $\mathcal J$

イロト イ団ト イミト イミト ニヨー つくべ

2D Incompressible Euler: $\partial_t \omega + \mathbf{v} \cdot \nabla \omega = 0$

$$
\circ \partial_t \triangle \psi + \mathcal{J}(\psi, \triangle \psi) = 0
$$

• stream function $v := \nabla^{\perp}\psi$, $\omega = \triangle \psi$ Jacobian $\mathcal J$

Arakawa's Jacobian $\cal J$ conserves energy & enstrophy on quads

《 ロ 》 《 御 》 《 君 》 《 君 》 《 君 》

 $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

$$
\mathcal{J}(\psi, \triangle \psi) = \frac{1}{3}\mathcal{J}_1(\psi, \triangle \psi) + \frac{1}{3}\mathcal{J}_2(\psi, \triangle \psi) + \frac{1}{3}\mathcal{J}_3(\psi, \triangle \psi),
$$

$$
\mathcal{J}_1(\rho, q) := \delta_{2x} \rho \delta_{2y} q - \delta_{2x} q \delta_{2y} \rho, \n\mathcal{J}_2(\rho, q) := \delta_{2x} (\rho \delta_{2y} q) - \delta_{2y} (\rho \delta_{2x} q), \n\mathcal{J}_3(\rho, q) := \delta_{2y} (q \delta_{2x} \rho) - \delta_{2x} (q \delta_{2y} \rho).
$$

2D Incompressible Euler: $\partial_t \omega + \mathbf{v} \cdot \nabla \omega = 0$

$$
\circ \partial_t \triangle \psi + \mathcal{J}(\psi, \triangle \psi) = 0
$$

• stream function $v := \nabla^{\perp}\psi$, $\omega = \triangle \psi$ Jacobian $\mathcal J$

Arakawa's Jacobian J conserves energy & enstrophy on quads

$$
\mathcal{J}(\psi, \triangle \psi) = \frac{1}{3}\mathcal{J}_1(\psi, \triangle \psi) + \frac{1}{3}\mathcal{J}_2(\psi, \triangle \psi) + \frac{1}{3}\mathcal{J}_3(\psi, \triangle \psi),
$$

$$
\mathcal{J}_1(p,q) := \delta_{2x} p \delta_{2y} q - \delta_{2x} q \delta_{2y} p, \n\mathcal{J}_2(p,q) := \delta_{2x} (p \delta_{2y} q) - \delta_{2y} (p \delta_{2x} q), \n\mathcal{J}_3(p,q) := \delta_{2y} (q \delta_{2x} p) - \delta_{2x} (q \delta_{2y} p).
$$

Arakawa's Jacobian and Pˆ† (ωPˆ*v*)

$$
\mathcal{J}(\psi, \triangle \psi) = \mathcal{K}(\psi, \triangle \psi)
$$

with $\mathcal{K}(\psi, \triangle \psi) := \text{curl}\hat{\mathcal{P}}^{\dagger}(\triangle \psi \hat{\mathcal{P}} \text{grad}_{\tau} \psi)$

 \rightarrow This suggests ${\cal K}$ as a generalization of Arakawa's Jacobian to general grids.

C-staggering

Preference of vector invariant nonlinearity: *curlv* \times $v + \frac{|v|^2}{2}$ 2

First Way to Instability: Specification of Kinetic Energy $\frac{|\nu|^2}{2}$ $\frac{2}{2}$?

- C-grid models struggle^a with kinetic energy formulation $|\vec{v}|^2$
- Orthogonal vs non-orthogonal grids
- **Plancherels theorem:** sum of squared components gives vector lengh if and only if components are from orthonormal basis.
- **Rectangular=Orthogonal** : sum of squared components |⃗*v*| ² ∼ P *^e*∈∂□ |*ve*| 2 is justified
- **Unstructured=Non-orthogonal**: need to rely on square of reconstructed vector $|\vec{v}|^2 \sim |\mathcal{P}v|^2$
	- \rightarrow This implies a mass matrix $\mathcal M$
- Using sum of squares on unstructured grids creates energy source/sink

a ICON-A: Zängl, QJRMS, 2017, MPAS-A: Skamarock-Klemp, MWR, 2012

Second Way to Instability: Exterior Product ω × *v*

- Mixture of vector-invariant and advective form of nonlinearity *(partly vector invariant, partly advective)*
- Prohibits cancelation of fluxes
- Ambiguous nonlinearity impedes energetic consistency and other conservation properties
- Lack of energetic consistency degrades models stability properties

Time Stepping

Fully discrete conservation laws presented here demand implicit time stepping.

Not Negotiable: Algorithmic Essentials

- Clean kinetic energy definition *E kin*:
	- **Non-orthogonal grids:** reconstruction-based mandatory
	- **Orthogonal grids:** sum of squares or by reconstruction. \bullet

 OQ

 \equiv

④ 다 시 (1) → 이 국 (2) → 국 (2) →

3D-vector-invariant form of nonlinearity

Not Negotiable: Algorithmic Essentials

- Clean kinetic energy definition *E kin*:
	- **Non-orthogonal grids:** reconstruction-based mandatory
	- **Orthogonal grids:** sum of squares or by reconstruction. \bullet
- 3D-vector-invariant form of nonlinearity

Negotiable: Algorithmic Degrees of Freedom

- Reconstructions: different reconstructions can be used
- Vertical coordinates *(we know how to do this)*
- \bullet Lumping mas matrix in time derivative: short-cut to inverse \mathcal{M}^{-1}
- Higher-Order, upwind-biased reconstructions \bullet
- **•** Flux limiters
- Time stepping: alternative time steppings can be used *(implicit used here for theoretical beauty)*

The Discrete Hierarchy of Atmosphere-Ocean Equations

 OQ

イロト イ母 ト イヨ ト イヨト