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Introduction

e Climate models are comprised of two important components:
O dynamical core and subgrid models
O  Dynamical core:

m  Grid resolving features

O  Subgrid Model:
m  Parametrization of unresolved features ((Sub)Mesoscale Parametrization, Ice)

® Physically, the ocean complex dynamics allows for the energy to be transferred for different scales

O  Then this subgrid parametrization will play a higher role
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Introduction

® In order to improve accuracy of climate projections, finer mesh resolution is required
O  This in turn greatly increases computational cost
® Machine Learning has now been rapidly increasing and being investigated and being used in many
climate areas
O  Parametrization (Previous talk Ernout N.)
O  PINN solve free surface (Previous talk Gorenstein |.)
O  Super-resolution (image, video processing)
m  This methodology uses Convolutional Neural, Generative Adversarial Network or Diffusion
models

m  Super-resolution has been also successfully applied in climate science as image inpainting
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Introduction

e Can we train a Machine Learning to help numerical models estimate a high resolution output from a

low resolution output?

® Objective:
O  Run a shallow water global simulation (in ICON-O) in a coarse mesh while also correcting it
with a ML-model trained with high resolution data



Methodology

e [CON-O:

O  Dynamical Core:

m  Spherical Grid
m  Finite Volume (C-grid)

e Based on Admissible Reconstructions (minimizes noise in triangular grids)
m  Triangular grid (icosahedral based)

m  Solves the invariant form equation
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Methodology

e |Initial condition (Galewsky et al. 2014): o0y
©  Geostrophic Jet at the north hemisphere; @ .,

40
o With an additional perturbation

O  Barotropic Instability
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Atmospheric initial condition, but the overall dynamics is present in the ocean



Methodology

Time
day 0 day 8

ICON-O High Resolution Simulation
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Initial condition (Galewsky et al. 2014): | = [erourts =
O  The training data (velocity fields): m i pr
m  Pair of 2.5km and 20km (with 12 hour integrated comparison output)
e Velocity fields substituted HR -> LR
m 10 days integration with 12 hour output
m Jetlocation core at ~42 N +/- 5
m 8 different perturbation location
m  Total: 23 different conditions with 12 hour output=383 snapshots

O

Coupled Run (Traditional Barotropic Instability):

At each 12 hours, the LR output is delivered to the trained ML for correction.



Methodology

e Neural Network:
O  The grid is divided into patches and interpolated into a regular high-resolution grid with 10% overlap
between each patch;

O  Each patch is set inside a U-Net structure (without biases)
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Results

® Result (10day integration): max;

;=g
i

max;

LIIIZ\X =

o} Maximum Norm error

The coupled run initially loses accuracy in the early time
As the instability grows the accuracy is improved

The same is observed in the height field (which was not
corrected by ML)

Overall we achieve 10km in our run (2 times fold)

As the optimal (blue line) result indicates, there’s still room

for improvement in the run
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Results

e Vorticity (instability day 7):

O

O

meanderings

e |
diff (20km)

§/

-150

~150

Lon

-1.0

I © ©
© o w
O]

The low resolution triggers the instability earlier due to unstructured grid error, show faster

The coupled run delays this instability with a lower meandering equivalent to the 10km run

Vort [x1074]

diff Vort [x107%]




Results

e Vorticity (instability day 7):

O  The low resolution triggers the instability earli¢

meanderings

O  The coupled run delays this instability with a i
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Results

e Energy conservation

O Our choice of assimilation with ML inputs energy into
the system;
m  The growth does not seem constant as it
decreases after day 6
m  The noise present in the vorticity is possibly
being an added energy in the system
O  Potential energy conservation is not violated with our
methodology (given that the height is not changed)
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Results

Spectral energy

O

The energy spectrum is violated for lower

wavenumbers than the other runs

The observed input of energy observed is
mostly concerned in the smallest scales
It does not seem to leak into the largest scales

of the grid

The Enstrophy is not significantly improved, but it is

not damaged by the assimilation

Non-dissipative simulation

In a more real dissipative simulation, these

noises may spuriously contribute to mixing
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Summary
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® Summary
O Our ML methodology for shallow water show potential use for increasing the accuracy of fluid
simulations
O  The use CNN (possibly due to its necessity of regular grids) provides spurious noise to the system
m These can, however, be mitigated by low order pass filters
m  Use ML Transformers Network? (ongoing)
o  The assimilation (of substituting variables) may also be improved by diminishing this noise and
increase the accuracy (4Dnet, nudging, etc.)
O  Future Work:
m Investigate improvements in data-assimilation technique for the ML coupled runs (preliminary)
m Investigate different frequencies of assimilation (ongoing)

m  Apply results in a real 3D ocean
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