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● Climate models are comprised of two important components:

○ dynamical core and subgrid models

○ Dynamical core:
■ Grid resolving features

○ Subgrid Model:
■ Parametrization of unresolved features ((Sub)Mesoscale Parametrization, Ice)

● Physically, the ocean complex dynamics allows for the energy to be transferred for different scales

○ Then this subgrid parametrization will play a higher role
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● In order to improve accuracy of climate projections, finer mesh resolution is required

○ This in turn greatly increases computational cost

● Machine Learning has now been rapidly increasing and being investigated and being used in many 
climate areas

○ Parametrization (Previous talk Ernout N.)

○ PINN solve free surface (Previous talk Gorenstein I.)

○ Super-resolution (image, video processing)
■ This methodology uses Convolutional Neural, Generative Adversarial Network or Diffusion 

models

■ Super-resolution has been also successfully applied in climate science as image inpainting
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● Can we train a Machine Learning to help numerical models estimate a high resolution output from a 
low resolution output?

● Objective:

○ Run a shallow water global simulation (in ICON-O) in a coarse mesh while also correcting it 
with a ML-model trained with high resolution data

Introduction



● ICON-O:

○ Dynamical Core:
■ Spherical Grid

■ Finite Volume (C-grid)

● Based on Admissible Reconstructions (minimizes noise in triangular grids)
■ Triangular grid (icosahedral based)

■ Solves the invariant form equation

Methodology



● Initial condition (Galewsky et al. 2014):

○ Geostrophic jet at the north hemisphere;

○ With an additional perturbation

○ Barotropic Instability

○ Maximum velocity 80 ms-1
■ Atmospheric initial condition, but the overall dynamics is present in the ocean

Methodology



● Initial condition (Galewsky et al. 2014):

○ The training data (velocity fields):
■ Pair of 2.5km and 20km (with 12 hour integrated comparison output)

● Velocity fields substituted HR -> LR
■ 10 days integration with 12 hour output

■ Jet location core at ~42 N +/- 5

■ 8 different perturbation location

■ Total: 23 different conditions with 12 hour output=383 snapshots

○ Coupled Run (Traditional Barotropic Instability):
■ At each 12 hours, the LR output is delivered to the trained ML for correction.

Methodology



● Neural Network:

○ The grid is divided into patches and interpolated into a regular high-resolution grid with 10% overlap 
between each patch;

○ Each patch is set inside a U-Net structure (without biases)

Methodology



● Result (10day integration):

○ Maximum Norm error
■ The coupled run initially loses accuracy in the early time

■ As the instability grows the accuracy is improved

■ The same is observed in the height field (which was not 

corrected by ML)

■ Overall we achieve 10km in our run (2 times fold)

■ As the optimal (blue line) result indicates, there’s still room 

for improvement in the run

Results
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● Vorticity (instability day 7):

○ The low resolution triggers the instability earlier due to unstructured grid error, show faster 
meanderings

○ The coupled run delays this instability with a lower meandering equivalent to the 10km run

Results
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● Energy conservation

○ Our choice of assimilation with ML inputs energy into 
the system;

■ The growth does not seem constant as it 
decreases after day 6

■ The noise present in the vorticity is possibly 
being an added energy in the system

○ Potential energy conservation is not violated with our 
methodology (given that the height is not changed)

Results



● Spectral energy

○ The energy spectrum is violated for lower 
wavenumbers than the other runs

■ The observed input of energy observed is 

mostly concerned in the smallest scales

■ It does not seem to leak into the largest scales 

of the grid

○ The Enstrophy is not significantly improved, but it is 
not damaged by the assimilation

○ Non-dissipative simulation
■ In a more real dissipative simulation, these 

noises may spuriously contribute to mixing

Results



● Summary

○ Our ML methodology for shallow water show potential use for increasing the accuracy of fluid 
simulations

○ The use CNN (possibly due to its necessity of regular grids) provides spurious noise to the system
■ These can, however, be mitigated by low order pass filters

■ Use ML Transformers Network? (ongoing)

○ The assimilation (of substituting variables) may also be improved by diminishing this noise and 
increase the accuracy (4Dnet, nudging, etc.)

○ Future Work:
■ Investigate improvements in data-assimilation technique for the ML coupled runs (preliminary)

■ Investigate different frequencies of assimilation (ongoing)

■ Apply results in a real 3D ocean

Summary
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