Challenges in simulating the
historical trajectory of
carbon stocks on land
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Cumulative historical carbon emissions and sinks
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Historical land carbon trajectories in CMIP6
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Impact in emissions-driven simulations

(b) Atmospheric CO,

] === E-HIST (12ESMs)
]| C-HIST (14ESMs)

450

CMIP6 Models: 405 £15 ppm
Obs: 398 ppm

FS -4

>0+
1850 1900 1950 2000

Year
. (e) GSAT anomaly

] === E-HIST (12ESMs)

B

C-Driven: +0.97 + 0.28°C
E-Driven: +0.95 + 0.37°C

(K]
& AL

B R EEEEEE————
1850 1900 1950 2000

Year

N8 | "\NCAR Hajjima et al., 2024




Emissions-driven CO, projection simulations
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Land-based mitigation strategies (e.g., reforestation, BECCS)
are likely required to achieve 1.5° C or 2° C climate targets

Potential to mitigate approximately 10-15 GtCO,eq yr~' by
2050, about 20%—-30% of the mitigation needed to achieve the

1.5°C temperature target (Roe et al., 2019)

Where are we going to
put the carbon (and will
it stay there)?




What drives the land carbon stock trajectory?
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What drives the land carbon stock trajectory?
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What drives the land carbon stock trajectory?
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What drives the land carbon stock trajectory?
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Two significant challenges:

1. All models are missing some relevant
processes, examples include:
o Land use change processes
m Wood harvest
m Shifting cultivation
m Agricultural management (e.g.,
soil tilling)
n ...
Nutrients
Permafrost carbon processes
Fire
Lateral carbon flows in rivers
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2. “Observed” land carbon stock trend is not
an observation
o Other observed trends we can use?
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Atmospheric CO, record provides clues

60\ All models overestimate the CO, trend by ~5
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(3) Land use change emissions could be too
large because of unrepresented land
abandonment during World War Il (Bastos

Eral Era2 Era3 Erad Era5 etal., 2016)
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Utilizing ecosystem manipulation experiments to assess models
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Increasing availability of long term (20-25 years) carbon stock and flux records

Live woody biomass trend estimates from
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Learning from parameter perturbation experiments

CLM5-PPE: SSP3-7.0
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Constraining Land Carbon Cycle Projections

Carbon sink projection (PgC)

future land sink: 73PgC € [44,105]
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Learning from parameter perturbation experiments

CLM5-PPE: SSP3-7.0
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Learning from parameter perturbation experiments

CLM5-PPE: SSP3-7.0
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Learning from parameter perturbation experiments

CLM5-PPE: SSP3-7.0
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Summary

e Models do not agree on historical or projected land
carbon sink, which drives considerable climate change
uncertainty

e The strength of the sink is driven by complex set of
factors (incl. land use change, fertilization, and climate
change)

e Historical sink is not observed, but some observational
records from satellite, Flux Tower Sites, forest
inventories, and the CO, record are now long enough that
they may be able to provide useful constraints on model
trend behavior

N NCAR
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CO2 fertilization / climate

Arora plots




Carbon Cycle Uncertainty in Land Model Projections
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The response of the terrestrial biosphere to increasing atmospheric CO 2 concentration is incompletely
understood, leading to major uncertainty in model predictions of carbon dynamics and future scenarios of

climate change (Arora et al. 2013). Moreover, despite evidence that the CO 2 fertilisation of vegetation production
may be limited by nutrient availability (Norby et al. 2010), nutrient feedbacks are not represented in all models
and differ in mechanistic detail, often not supported by observations (Zaehle et al. 2014). Equally pressing are
widespread reports that global trends in tree growth (van der Sleen et al. 2014) are not consistent with growth
estimates simulated by state-of-the-art models of the CO 2 fertilisation effect. Consistent with this observational
trend is data from a CO 2 manipulation experiment on 100-year-old trees in Australia: six years of CO 2
enrichment have stimulated photosynthesis, but not led to an increase in tree growth (Ellsworth et al. 2017).

Wu et al. 2021, Science Advances




ILAMB results

(b) Change in Land Carbon Storage
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Operoted by UCAR
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Thank you!
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Time for questions, comments and discussion




Hoffman et al., 2014

https://equsphere.copernicus.org/preprints/2024/equsphere-2024-188/egusphere-2024-188.pdf
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Global carbon budget

The cumulative contributions to the global carbon budget from 1850
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GLOBAL @w Fate of anthropogenic CO, emissions (2012-2021)
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