

Derivation of an energetically consistent Eddy-Diffusivity Mass-Flux scheme for oceanic convection

Manolis Perrot & Florian Lemarié - Inria (EPC Airsea), Laboratoire Jean Kuntzmann, Grenoble

Context : "consistent" approach to the parameterization problem

Case study : parameterization of the vertical flux $\overline{w'\varphi'}$ in the boundary layer under the combined effect of local turbulence and convective plumes

Inaccuracy of the eddy-diffusion approach ($\overline{w'\theta'} \stackrel{\text{param}}{=} -K_{\theta}\partial_{z}\overline{\theta}$)

For convection:

 $\overline{w'\theta'} = -K_{\theta}\partial_z\overline{\theta}$

- \Rightarrow Transport by dense plumes not directly related to the local gradients
- ⇒ Need of 'non-local' behavior [Deardorff 1966]

Alternatives beyond eddy-diffusivity

- \longrightarrow Use a "gradient correction factor" (a.k.a. countergradient term) : $\overline{w'\theta'} \stackrel{\text{param}}{=} -K_{\theta}(\partial_z \overline{\theta} \gamma_{\theta})$
 - → Non-Penetrative Convective adjustment schemes [Killworth, 1989; Madec et al., 1991]
 - > Coherent structures modeling : Mass-flux schemes & Multi-fluid modeling
 - Atmosphere : [Hourdin et al., 2002; Siebesma et al., 2007; Tan et al., 2018; Thuburn et al., 2018 ...]
 - Ocean : proof of concept [Giordani et al., 2021]

Combined Eddy-Diffusivity Mass-Flux Approach:

- Eddy-diffusivity (ED): small scale isotropic turbulence
- Mass-flux (MF): direct contribution of coherent structures (= convective plumes) to fluxes

Outline :

- 1. From Two-Fluid modeling to Mass-Flux Schemes
- 2. Horizontally averaged energy budgets (ED & MF coupling)
- 3. Practical implementation
- 4. Numerical experiments

Derivation of EDMF schemes starting from first principles

Two-domain decomposition

Decompose horizontal cell average into plume and environment averages

 $\overline{\phi} = a_p \phi_p + a_e \phi_e$

 a_p , a_e : fractional areas of subdomains w_p , w_e : vertical velocities ϕ_p , ϕ_e : advected fields (u, v, θ, S) E, D: horizontal entrainment/detrainment

Plume averaged equations

$\frac{\ddot{\mathbf{o}}}{w' \phi'}$	$= \frac{1}{1 - a_p}$ $= a_p w_p (\phi_p - \overline{\phi}) - K_\phi \partial_z \overline{\phi}$ $= a_p w_p (w_p - \overline{\psi}) - K_\phi \partial_z \overline{\phi}$
$w^{\mathbf{u}_{h}}$ $\partial_{z}(a_{p}w_{p})$ $a_{p}w_{p}\partial_{z}\phi_{p}$	$= m a_p w_p (\mathbf{u}_{h,p} - \mathbf{u}_h) - K_m \sigma_z \mathbf{u}_h$ $= E - D$ $= \mathbf{a} E(\overline{\phi} - \phi_p)$
$a_p w_p \partial_z \mathbf{u}_{h,p} \ a_p w_p \partial_z w_p \ B_p$	$= \overline{a} E(\overline{\mathbf{u}}_h - \mathbf{u}_{h,p}) + a_p w_p C_u \partial_z \overline{\mathbf{u}}_h$ = -(\vec{a} b) E w_p + a_p \{ a B_p + \vec{a} (b'/h) w_p^2 \} = b_{eos}(\phi_p) - b_{eos}(\overline{\phi})

Rescaling coefficient

Vertical turbulent flux for component ϕ Vertical turbulent momentum flux

Plume area conservation equation Plume equation for component ϕ Plume horizontal momentum equation Plume vertical velocity equation Buoyancy forcing term

• $\widetilde{\alpha} = 1 \Leftrightarrow$ small area limit \rightarrow standard mass flux scheme

M. Perrot, F. Lemarié & T. Dubos. *Energetically consistent Eddy-Diffusivity Mass-Flux schemes. Part I: Theory and Models*, 2024. https://hal.science/hal-04439113v3, under review in JAMES

Eddy-Diffusivity and Turbulent Kinetic Energy

'local' ED closure:
$$\overline{w'\phi'} = -K_{\phi}\partial_z \overline{\phi} \swarrow K_{\phi} \propto k^2/\epsilon$$
 (one-equation turbulence models)
 $K_{\phi} \propto k^2/\epsilon$ (second-order turbulence models)

with Turbulent Kinetic Energy (TKE):
$$k = rac{1}{2} \overline{{f u}'\cdot{f u}'}$$

MF terms lead to energy exchanges \rightarrow ED and MF are **not independent!** Energy budgets enable coherent coupling

Horizontally Averaged Energy budgets

M. Perrot, F. Lemarié - Energetically consistent EDMF

Bulk and boundary energy fluxes within EDMF closure

Consistent energy budgets

Novelty for ocean (and atmosphere) EDMF: consistent TKE equation

$$\begin{array}{lll} \partial_{t}k - \partial_{z}\left(K_{k}\partial_{z}k\right) &= K_{u}\left(\partial_{z}\overline{\mathbf{u}}_{h}\right)^{2} - K_{\phi}\partial_{z}\overline{b} & \text{ED related TKE production terms} \\ &- u_{\rho}a_{\nu}\left(\operatorname{ur}_{n,\rho} - \overline{\mathbf{u}}_{r}\right) - \partial_{\tau}\overline{\mathbf{u}}_{r} + a_{p}w_{p}\left(b_{p} - \overline{b}\right) & \text{MF related TKE production terms} \\ &- \partial_{z}\left(a_{p}w_{p}\left[k_{p} - k + \frac{1}{2}\|\mathbf{u}_{p} - \mathbf{u}\|^{2}\right]\right) & \text{MF related TKE transport term} \\ &- \overline{\epsilon}_{\nu} & \text{TKE dissipation} \\ &a_{p}w_{p}\partial_{z}k_{p} &= E\left(k - k_{p} + \frac{1}{2}\|\mathbf{u}_{p} - \mathbf{u}\|^{2}\right) - a_{p}(\epsilon_{\nu})_{p} & \text{Plume related TKE} \\ &K_{k} &= c_{k}l_{m}\sqrt{k} & \text{TKE eddy-diffusivity} \end{array}$$

Goes beyond existing literature (Witek et al., 2011a-b; Han & Bretherton, 2019) not motivated by considerations of energetic consistency

Consistent energy budgets

$$\begin{array}{ll} \partial_t k - \partial_z \left(K_k \partial_z k \right) &= K_u (\partial_z \overline{\mathbf{u}}_h)^2 - K_\phi \partial_z \overline{b} \\ &- u_p w_p (\mathbf{u}_{h,p} - \overline{\mathbf{u}}_h) + \partial_z \overline{\mathbf{u}}_h + a_p w_p (b_p - \overline{b}) \\ &- \partial_z \left(a_p w_p \left[k_p - k + \frac{1}{2} \| \mathbf{u}_p - \mathbf{u} \|^2 \right] \right) \\ &- \overline{\epsilon}_{\nu} \end{array}$$

ED related TKE production terms MF related TKE production terms MF related TKE transport term TKE dissipation

 \rightarrow Energy conservation

Practical implementation

M. Perrot, F. Lemarié - Energetically consistent EDMF

Discretization aspects

- Extension of the energy-conserving discretization by Burchard (2002) to the EDMF context
- · Adapted for handling any unstable part of the density profile

Figure: Time series of the vertically integrated energy budget for the case W005_C500.

"boundary layer-then-convection strategy"

ED step

$$\begin{split} \phi^{n+1,\star} &= \phi^n + \Delta t \partial_z \left(K_{\phi}(k^n, b^n) \partial_z \phi^{n+1,\star} \right) \\ \mathbf{u}_h^{n+1,\star} &= \mathbf{u}_h^n + \Delta t \partial_z \left(K_{\mathbf{u}}(k^n, b^n) \partial_z \mathbf{u}_h^{n+1,\star} \right) \\ b^{n+1,\star} &= b_{\cos}(\phi^{n+1,\star}) \end{split}$$

MF step

$$\begin{aligned} \left[\mathbf{a}_{p}, w_{p}, \phi_{p}, \mathbf{u}_{h,p}, k_{p}, B_{p} \right] &= \mathrm{MF}(b^{n+1,\star}, \mathbf{u}_{h}^{n+1,\star}) \\ \phi^{n+1} &= \phi^{n+1,\star} - \Delta t \partial_{z} \left(a_{p} w_{p}(\phi_{p} - \phi^{n+1,\star}) \right) \\ \mathbf{u}_{h}^{n+1} &= \mathbf{u}_{h}^{n+1,\star} - \Delta t \partial_{z} \left(a_{p} w_{p}(\mathbf{u}_{h,p} - \mathbf{u}_{h}^{n+1,\star}) \right) \end{aligned}$$

TKE update

$$\boldsymbol{k}^{n+1} = \boldsymbol{k}^n + \Delta t \partial_z \left(K_k \partial_z \boldsymbol{k}^{n+1} \right) + \mathcal{F}_k (\boldsymbol{b}^{n+1}, \mathbf{u}_h^{n+1}, \mathbf{u}_h^n, \ldots)$$

M. Perrot & F. Lemarié. *Energetically consistent Eddy-Diffusivity Mass-Flux schemes. Part II: implementation and evaluation in an oceanic context*, 2024. https://hal.science/hal-04666049, under review in JAMES

4

Numerical experiments

A collection of LES cases

In collaboration with B. Deremble, IGE, Grenoble (TRACCS project)

Case	heat flux	swrad	wind	E-P	Coriolis	Ini. ML	Model	
	${ m W~m^{-2}}$	${ m W~m^{-2}}$	Pa	$mm day^{-1}$		-		
FC075	-75	0	0	0	0	no	NCAR-LES	
FCML075	-75	0	0	0	0	yes	NCAR-LES	
FC500			0	0		no		
W05_C500	-500	0	0.5	0	0	no	Meso-NH	
W005_C500			0.05	0		no		
$W01_EC75$	-75	0	0.1	1.37	10^{-4}	no	NCAR-LES	
DC	-75	235	0.	1.37	0	no	NCAR-LES	
WANG1	-111	0	0	0	1.26×10^{-4}	yes	Meso-NH	
W05_C100	-100	0	0.5	0	1.06×10^{-4}	no	Meso-NH/Basilisk	
W05_C200	-200	0	0.5	0	1.06×10^{-4}	no	Meso-NH/Basilisk	
$W081_W150$	150	0	0.81	0	1.06×10^{-4}	no	Meso-NH/Basilisk	
preliminary tests with TLab (J. P. Mellado et al.) and Oceananigans								

+ Realistic case : Hymex/ASICS-MED campaign (Giordani et al., 2021)

Example 1 : FC500 case

Example 1 : FC500 case

Example 2 : W005_C500 case (Instantaneous profiles after 72 hours)

Example 2 : W005_C500 case (Instantaneous profiles after 72 hours)

HyMeX/ASICS-MED experiment (LION buoy)

Sequence of strong convective events in the Northwestern Mediterranean during the winter 2013.

Summary

Eddy-Diffusivity Mass-Flux (EDMF) parameterization for convection

$$w'\phi' \stackrel{\text{param}}{=} -K_{\phi}\partial_{z}\overline{\phi} + a_{p}w_{p}(\phi_{p}-\overline{\phi})$$

local turbulent mixing nonlocal transport by coherent structures

- PDE-based derivation and explicit assumptions
- ✓ Flexible multi-fluid averaging framework
- ✓ Fully-consistent Subgrid+Resolved energy budgets
- Evaluation in a SCM against LES simulations and observational data.

M. Perrot, F. Lemarié & T. Dubos. *Energetically consistent Eddy-Diffusivity Mass-Flux schemes. Part I: Theory and Models*, 2024. under review in JAMES

M. Perrot & F. Lemarié. Energetically consistent Eddy-Diffusivit Mass-Flux schemes. Part II: implementation and evaluation in an oceanic context, 2024. under review in JAMES

In progress

- Sensitivity analysis
- Parameter estimation (w. O. Zahm et al.)
- Reference data : LES simulations & laboratory experiments (PLUME project)

- ▶ Implementation in Croco (Med. Sea operational configuration)
- Implementation in MesoNH (atmosphere)
- Coupling with parameterization of restratification processes

