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Main Themes
* Biodiversity underpins the carbon cycle

» Seafloor as carbon recipient
* Many forms of benthopelagic coupling

* Critical Role of continental margins and
Deoxygenation

 Human Disruption of the Benthic Boundary Layer
 Trawling, Oil and Gas, Mining, mCDR

» Governance and jurisdiction challenges at the
seafloor-water interface



Carbon services provided by the biological pump
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Beyond small particles and fecal pellets: Blue carbon in action
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Biodiversity underpins Carbon Transport and Storage
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Oxygen minima The Deep Sea is NOT
a single ecosystem!
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—————— Decade for Ocean Science
’ Barcelona Statement

The Conference discussed and identified the
following future priorities for ocean knowledge
and science generation and uptake that could
be fulfilled via the Ocean Decade framework.
These include the co-design and co-delivery of
science and knowledge to:

* Understand global distribution and human
health and ecosystem impacts of marine
pollution across the land-sea continuum,
including the identification of priority
pollutants and consideration of emerging
and unregulated pollutants.

* Enhance and scale-up marine and coastal
ecosystem-based management approaches,
including a focus on better understanding of
and solutions for multiple stressors.

e Better understand deep-sea ecosystems,
including vulnerability to climate change and

2021 United Nations Decade . . ...
2030 of Ocean Science New or emerging economic activities.

for Sustainable Development




-orms of bentho-
nelagic coupling

Migrations — ontogenetic, diurnal, seasonal
Food webs and feeding behavior
Sinking particles

Sinking algae and carcasses
Resuspension
Bottom disturbance




Continental margins extend 150,633 km around the ocean. They
(<2000 m) account for a disproportionately large fraction of

carbon burial (> 40%) (Muller-Karger et al. 2005)

1998-2001 POC Flux 0.62 Pg Cy-1

reaches seafloor




Margins are heterogeneous
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Terrestrial influence:
diment transport

Cross-slope
currents
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Many Substrates in the Deep Sea —
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Heat Content (1022 Joules)

25

20

15

Warming and deoxygenation in the deep sea
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Warming causes OMZ expansion in tropical waters
Consistent with climate change response (Bopp et al. 2002)

Stramma et al. 2008
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Iron fertilization causes deoxygenation

In the past.....

RESEARCH ARTICLE | FEBRUARY 05, 2024 . . .
Iron fertilization-induced deoxygenation of eastern equatorial Eolian dust and volcanic eruptions
Pacific Ocean intermediate waters during the Paleocene-Eocene Induce deoxygenation

thermal maximum

Xiaodong Jiang @ ; Xiangyu Zhao; Xiaoming Sun; Andrew P. Roberts; Appy Sluijs; Yu-Min Chou @;
Weigi Yao @; Jieqi Xing; Weijie Zhang; Qingsong Liu

—+ Author and Article Information

Geology (2024) 52 (4): 276-281.  https://doi.org/10.1130/G51770.1 Article history ¢

And for marine Carbon Dioxide Removal (mCDR)

If OIF is successful then increased export production will eventually fuel increased aerobic microbial
decomposition and oxygen consumption at depth (Cullen and Boyd 2008), which could lead to the
development of hypoxia or anoxia below the euphotic zone (Yoon et al. 2016).

Net improvement in global export is tied to a net deterioration of subsurface oxygen. (Rohr 2019)



How does this influence biodiversity and the carbon cycle?

Mesopelagic migrant pump has the greatest potential to contribute to carbon
sequestration (Boyd et al. 2019)

Diel Vertical Migration (DVM) depth set by oxygenation Shoaling oxycline predicted
to cause reduced depth of daily migrations, less vertical carbon transfer to depth.

Bianchi et al. 2013
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Eastern Pacific
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DVM can reach the seafloQesg
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FOOD CHAIN: Off CA, demersal fish shift from pelagic to benthic diets in the OMZ

= Longer, less efficient food chains, Low productivity, Less demersal fish!
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Deoxygenation affects Vision
Larvae need more light to see at low O, concentrations
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VISION IN LARVAE: Cephalopods and brachyuran crab show visual
sensitivity at pO, > hypoxia (~5 kPa/60 umol/kg)

Luminoxyscape defines visually suitable habitat
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Shoaling larval distributions are expected as deoxygenation occurs seasonally,
during La Nina, and over longer time (CC) due to visual limitations.
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Low oxygen brings benthos into the water. Promotes dispersal.

Para-sailing snails

Allia (Astyris) permodesta
in the Santa Monica Basin (830 m)
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s ‘ : | » Amphinomid polychaete
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Pakistan margin 850 m
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y 20:18:52

Tuna crab Pleuroncodes planipes shifts from
benthic to pelagic mode — Costa Rica 400 m




A Deeper Human Footprmt alters the Carbon Cycle

N Warming. Acidification I Deoxygenation
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» lower production of flora and fauna
 the loss of fine flocculent material

» increased sediment resuspension
* mixing and transport

Increased oxygen exposure.

These offset by:
* reduced faunal bioturbation

* reduced community respiration
* increased off-shelf transport
* Increases n primary production from the resuspension of nutrients

55-60% of trawling-induced aqueous CO, (0.34-0.37 Pg CO,) is
released to the atmosphere over 7-9 years (Atwood et al. 2024)

Epstein et al. 2021

Key
Processes

= deposition

g = resuspension

= = ateral
transport

| = oxygen
penetration
= burial
= off-shelf
transport
Factors

@ = photosynthesis

= sediment
(including OC)

= turbidity

= nutrients

= bioturbation

= organic carbon
= respiration

= fine sediments
(including OC)

Ol £ICE6] 1 I

= adsorption of
ocC

Direction of impact

+ =increase
l = drecrease
+ ,l= negative impact
on OC storage

+ / l= positive impact
on OC storage




Overfishing and Ghost Fishing

Loss of Biomass storing C

Bottom Trawling

Loss of Calcifying Ecosystems and associated fish

Deep-sea corals can be 4000 + years old!



Taking the plunge
Maxdmum oos-ztional depth of offshore fields*, km

Increasingly deeper et
oil and gas exploitation 2 %

Mars Mcurtain

Aucer Independence BW

Allantis Hub Peace

Floating drilling

platform Production, storage, and offloading vessel

a b, e B

*Ia first operating year

Fishes and mammals

" Directional drill bit -

Oil spills damage biodiversity:
Mesopelagic fishes & crustaceans
Benthic invertebrates, calcifiers
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Seabed Mining: Bentho-pelagic coupling and pelagic impacts
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Mesopelagic migrations

160° W

Individuals

* Respiratory distress

+ Auditory distress

* Reduced feeding

» Reduced visual communication
» Buoyancy issues

« Toxicity

140° W 120° W

Populations
» Changes in community composition

+ Emigration
+ Mortality

« Decreased fitness/reproduction

Ecosystem Services
» Fisheries

+ Seafood contamination
« Carbon transport

+ Biodiversity


https://www.researchgate.net/profile/Emilio-Cucalon-Zenck

I Warming Acidification I Deoxygenation
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Climate Change, resilience and Carbon fson N\
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Marine Carbon Dioxide Removal

APRIL 11,2024 | 4 MIN READ

The U.S. Will Need to Spend $100 Billon a Year on
Carbon Removal

The U.S. needs to vastly increase taxpayer spending on direct carbon removal
technology to meet President Biden’s climate goals, the Rhodium Group says

BY CORBIN HIAR & E&E NEWS

Ocean Visions & Esri Unveil New Tool For
Ocean Iron Fertilization (OIF) Planning

Q by Violet George - April 11, 2024 - ® 3 minute read

ARTIFICIAL
UPWELLING &
DOWNWELLING

Startups aim to curb climate change by
pulling carbon dioxide from the ocean—not

ECOSYSTEM
RECOVERY

the air

Schemes to use renewable energy to process seawater may be cheaper and easier
than air capture

GO
STORAGE

26 MAR 2024 - 5:35PMET - BY ROBERT F.SERVICE

Enhancing natural carbon fluxes? Or disrupting the carbon cycle?



The Deep Ocean is the disposal target.... But how deep?

Waters below 1000 m are targeted 100-year sequestration..
because carbon can stay out of the a Smco e ascion i

atmosphere for > 100 years

Siegel et al. 2021
Env. Res. Letters

Atmosphere

Ocean

V*

DIC 2
Photosynthesns

Sequestered
carbon

Carbon Residence Time (yr)
varies with Ocean Basin & Water Depth

120°W 0° 120°E

Ricour et al. 2024




Impacts of intervention methods

Marine climate interventions (mCDR) will alter i oo s S
Altered food supply

deep ecosystems & ca rbon cycle processes Biogeochermical changes

reflectivity O Animal responses

-— " “ ||

- ®Reduced ‘ —— Turbidity Crop waste

light and deposition

productivity Alkalinity| @ Enhanced o
addition productivity at ;

seasurface  —=— Artificial Reduced light

‘ A upwelling

= Ocean fertilization I I I Coastal blue carbon
\/

® Greenhouse gas
I release (N,0)

® Trace metal ® Altered vertical ® Altered food
toxicity migration supply
(Cd, Ni, Cr)

® Dissolved organic
carbon release

e Acidification and o Liquid CO, ® Offshore

deoxygenation injection C export
® Hypercapnia

e ® Altered food supply

mortality ® Greenhouse gas release
\J l (CH,, N,0)

® Altered food supply /‘ ®oH,S \0Anoxia Levin et al
2023

Direct CO, injection Liquid CO, deposition ® Smothering seafloor life, animal clustering,
into seafloor on seafloor mortality, and altered interactions

Science can help evaluate effectiveness, location, depth & associated impacts of
ocean carbon dioxide removal interventions




Science has revealed that the ocean is highly connected!

Thermohaline Circulation Animal migrations:

whales, sea lions, tuna, turtles,

What we do in one part of the ocean
affects other parts
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sharks, albatross, squid

Humpback whale
Fin whale

Sperm whale
Sooly shearwater
California sea lion
Northern fur seal
Blue whale
Northern elephant seal
Thresher shark
Yellowfin tuna
Albacore tuna
Blue shark

White shark

Mako shark
Loggerhead turile
Ocean sunfish
Pacific bluefin tuna
Leatherback furile
Salmon shark
Laysan albatross
Blackfooted albatross

Humboldt squid



DOI: 10.1111/gch.16854

~Global Change Biology
RESEARCH ARTICLE WILEY

Ocean iron fertilization may amplify climate change pressures
on marine animal biomass for limited climate benefit

Alessandro Tagliabue' @ | Benjamin S. Twining? | Nicolas Barrier® | Olivier Maury® |
Manon Berger* | Laurent Bopp*

. . (d) Net primary production
(¢)Net primary production (mol C m-2 year-') additionality (mol C m-2 year-)

N

Iron fertilization may amplify negative effects of climate
Change on productivity and fisheries in the tropics.
Only a few countries will benefit and many will loose
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Governance - Who owns the ocean?
Most is deep sea!
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Complex management of the International Ocean
The Alphabet Soup of High Seas & Deep Sea Governance

Sea floor and Water column are separate jurisdictions!
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Bentho-Pelagic Coupling Under Climate Change
and Other Human Disturbances

ABSTRACT:

This presentation will discuss how deep-sea biodiversity underpins the carbon cycle, and the importance of
seafloor heterogeneity and forms of pelagic-benthic interactions that are involved. Continental margins play
an outsized role in carbon sequestration, and climate change has major consequences for deep ecosystems on
margins. Deoxygenation in particular can alter carbon flux to the sea floor. Additionally, human activities on the
seabed, such as bottom trawling, energy extraction, seabed mining and ocean—based climate interventions,
can act to disrupt the carbon cycle and carbon services provided by biodiversity. Finally, | will discuss how
disjunct governance of the water column and seabed creates challenges in management and conservation
from a carbon conservation perspective.



Risk Scenarios for the Deep Sea from Cumulative Climate Stressors (Warming, Deoxygenation, Acidification)
(not including potential compounded impacts from direct human impacts from extraction, mCDR, etc.)

Courtesy
S. Seabrook
Reduced fisheries Dissolution of cold- Decreased Reduced Increased
water coral habitat carbon burial

Biodiversity thane flux
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