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Yet, the IPCC AR6 report downgraded the confidence in 
historic and projected North Atlantic Ocean circulation.

IPCC Chapter 9 (Fox-Kemper et al. 2021): 
“For the 20th century, there is low confidence in reconstructed and 
modelled AMOC changes because of their low agreement in 
quantitative trends. … Since AR5/SROCC, confidence in modelled 
and reconstructed AMOC has decreased due to new observations 
and model disagreement.”
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Large North Atlantic Ocean upper-ocean temperature and 
salinity biases originate in ocean models.



Project Goals

1. Develop Process Oriented Diagnostics (PODs) for the subtropical to 
subpolar North Atlantic Ocean

2. Characterize biases in upper-ocean fields and thermohaline 
processes in Ocean Model Intercomparison Project (OMIP) 
simulations

3. Identify relationships between upper-ocean model biases, water 
mass transformation, and the Atlantic meridional overturning 
circulation (AMOC)



OMIP Interannual Forcing (IAF) simulations are 
driven by past atmospheric conditions

OMIP-1
Driving dataset: Coordinated Ocean-
ice Reference Experiment (CORE, 
Large and Yeager 2009)
Time Period: 1948-2009
Cycles: 5

OMIP-2
Driving dataset: Japanese 55-year 
atmospheric reanalysis- driving ocean 
(JRA55-do, Tsujino et al. 2018)
Time Period: 1958-2018
Cycles: 5-6

For a summary of the CMIP6-OMIP protocol and results: Griffies et al. (2016) and Tsujino et al. (2020)



Wide range of AMOC strengths in OMIP-1



Greater AMOC agreement in OMIP-2



Association of AMOC strength with variability
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Stronger mean AMOC associated with greater variability

Climatological AMOC at 26°N (Sv)
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Models with stronger AMOC have greater decline since 2000

Climatological AMOC at 26°N (Sv)
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Diagnosing reasons for multimodel spread in AMOC 
strength may also explain spread in AMOC trends 

Models with stronger AMOC have greater decline since 2000



OMIP simulations have 
large upper-ocean 
temperature biases in 
the Gulf Stream and 
North Atlantic Current 
regions

OMIP-1 upper-200m temperature biases 

Figure: Steve Yeager
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OMIP-2 upper-200m temperature biases 

Figure: Steve Yeager



Large upper-ocean 
salinity biases also 
occur in the Gulf 
Stream and North 
Atlantic Current regions

OMIP-1 upper-200m salinity biases 

Figure: Steve Yeager



Large upper-ocean 
salinity biases also 
occur in the Gulf 
Stream and North 
Atlantic Current regions

OMIP-2 upper-200m salinity biases 

Figure: Steve Yeager



North Atlantic Current temperature and salinity 
bias strongly related in OMIP-1, less in OMIP-2.

Figure: Steve Yeager

OMIP-1 OMIP-2 

T Bias (°C)T Bias (°C)

S 
B

ia
s 

(°
C

)

S 
B

ia
s 

(°
C

)



Stronger 
subpolar AMOC 
associated with 
larger North 
Atlantic Current 
cold bias 

Stars: OMIP-1
Triangles: OMIP-2
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Stronger 
subpolar AMOC 
associated with 
larger North 
Atlantic Current 
fresh bias 

Stars: OMIP-1
Triangles: OMIP-2
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Yet, no clear relationship 
of AMOC with surface 
density bias in the North 
Atlantic Current region 
because of T and S 
compensation

Stars: OMIP-1
Triangles: OMIP-2
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OMIP simulations with 
reduced cold bias have: 
1. North of 50°N, 
poleward upper-branch 
flow shifted to lighter 
water masses
2. Weaker deep 
overturning
3. Southward return flow 
shifted to lighter classes 

Cross-model correlation: AMOC streamfunction with T bias

Contours: Multimodel mean AMOC streamfunction
Shading: 95% significant cross-model correlation coefficient
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OMIP simulations with reduced cold bias have poleward upper-
branch flow at lighter classes, weaker overturning, and southward 
return flow at lighter classes.

latitude
σ 2

 (k
g 

m
-3

)
latitude

σ 2
 (k

g 
m

-3
)

Shading: Average AMOC in 3 models with 
weakest cold bias 

Shading: Average AMOC in 3 models with 
strongest cold bias 



What’s next: Water 
mass transformation 
to connect upper-
ocean temperature 
and salinity to AMOC

Figure: Taydra Low



Summary
• AMOC climatological strength linked to variability and trends 

since 2000 in OMIP simulations 
• Temperature and salinity biases in North Atlantic Current region 

related to AMOC strength
• Reduced cold bias associated with shallowed, weaker AMOC 

upper cell throughout North Atlantic and near-surface subpolar 
transformation at lighter density classes 


