Addressing challenges in identifying trends in extremes to better compare models and observations

Directly comparing historical trends in heat extremes with model simulations is difficult due to influence of internal variability

Signals in extremes get more clear through spatial aggregation. Hot extremes warm "too" fast in US in CCSM ensemble

hypothesized cause: decrease in precipitation and ET

In contrast, western European heat extremes are warming faster than most models (1950-2022), difference greater than for mean
\% Simulations of TXx with trends > ERA5

\% Simulations of TXm with trends > ERA5

Many metrics of changes in extremes are a strong function of the mean state.

Three examples.

In all cases, the true climate change signal is a uniform warming across summertime temperatures.

The change of the number of days beyond a threshold depends on the

 width of the distribution: greater increases for narrow distributions

The change of the number of days beyond a threshold depends on the symmetry of the distribution: greater increases for short upper tails

The change in the probability of an event depends non-linearly on the threshold and the underlying distribution

A modest proposal: measure change in extremes as the change in temperature for a given percentile (max = 100th percentile)

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature
Global land temperature

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature

Global land temperature

Summer versus annual-mean temperatures

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature

Global land temperature

Summer versus annual-mean temperatures

Local summer average temperature

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature

Global land temperature

Summer versus annual-mean temperatures

Local summer average temperature

Local summer extreme temperature

A hierarchy of controls on the change in extremes (across models, or comparing models and observations)

Global mean temperature
Global land temperature

Summer versus annual-mean temperatures

Local summer average temperature

Local summer extreme temperature

The probability of very extreme events compared to the mean is higher for locations with positive skewness and/or kurtosis

McKinnon and Simpson (2022), GRL; see also Van Loon and Thompson (2023), GRL

This can lead to apparent trends in extremes from sampling alone

McKinnon and Simpson (2022), GRL; see also Van Loon and Thompson (2023), GRL

Two challenges:

1. The contribution of internal variability to trends in extremes is very large
2. The probability of a given extreme (e.g. a 3-sigma event) is spatially-variable due to non-normality in temperature distributions, so unclear how to average across space

Approach: spatial average of ranked difference between hot extremes and median

Synthetic data: normal distribution with an increasing variance

Approach: spatial average of ranked difference between hot extremes and median

Approach: spatial average of ranked difference between hot extremes and median

Approach: spatial average of ranked difference between hot extremes and median

Advantages of a rank-based approach

- No dependence on the underlying distribution
- The expected rank across locations and time is known (33 for 65 years of data)
- Can combine information or inter-compare across different definitions of heatwaves

Advantages of a rank-based approach

- No dependence on the underlying distribution
- The expected rank across locations and time is known (33 for 65 years of data)
- Can combine information or inter-compare across different definitions of heatwaves

Data: ERA5, daily maximum (Tx), 1959-2023

Spatial heterogeneity in trends of amplification in ERA5, very few trends are locally significant ($\alpha_{F D R}=0.05$)

significance indicated by white contours / stippling

seasonal maximum (NH)

seasonal maximum (tropics)

seasonal maximum (SH)

No significant trends at the global or hemispheric/tropical scale

What about cold summertime temperatures (still Tx though)? In most regions of the world, they are warming less than the median

seasonal minimum (Global)

Significant trends (except in NH) towards damped warming of the lower tail

CMIP6 simulations tend to agree with observations of no historical, significant amplification of heat extremes

But they miss the observed damping of the cold tail in the tropics and Southern Hemisphere, perhaps related to precipitation changes

Consistency between models and observations in terms of lack of hot day amplification does not preclude model errors

a) Wet

observations: Tmax in "wet" regions is insensitive to evaporative fraction -> lack of land/atmosphere coupling
most models (CMIP5): Tmax is higher when the evaporative fraction is lower (drier conditions) -> existence of land/atmosphere coupling

Trends in extremes are strongly affected by internal variability, so can be difficult to intercompare with models.

Many trend metrics are a strong function of the underlying distribution, which should be considered before interpretation.

The probability of extremes is spatially-variable due to non-normality. We propose a rank-based analysis. Heat extremes are not warming faster than the median at large scales in models or observations, but the models miss the damped warming of the lower tail.

Trends in extremes are strongly affected by internal variability, so can be difficult to intercompare with models.

Many trend metrics are a strong function of the underlying distribution, which should be considered before interpretation.

The probability of extremes is spatially-variable due to non-normality. We propose a rank-based analysis. Heat extremes are not warming faster than the median at large scales in models or observations, but the models miss the damped warming of the lower tail.

Be in touch if you want to join the group to work on these topics! Post-docs (now) and PhD students (next season)

Extras

(a) Individual ranks,

Change in mean only

(d) Averaged ranks,

Change in mean only

(b) Individual ranks, Change in variance only

Fractional change in variance
(e) Averaged ranks,

Change in variance only

(c) Individual ranks,

Change in mean and variance

(f) Averaged ranks, Change in mean and variance

"Analog locations" (similar skewness and kurtosis) in CESM2 produce heatwaves as large and larger than we saw in 2021

But comparable events are rare:
the maxima across 171 years $\times 50$ ensemble members

After accounting for warming of the mean, a large climate model ensemble detects significant trends of the most extreme events, although their probabilities remain small

Data: CESM2 large ensemble

Daily temperature data is typically non-Gaussian, so insufficient to only assess changes in the mean and variance

Black: all analog locations

Red: both observations and CESM2 had greater than 4 sigma event

Hot days largely follow the median; some places have warmed a lot

Relatively small differences between percentiles, limited significance

Qualitatively similar results with the 1959-2023 ERA5 analysis

Assuming climate change has mostly shifted the temperature distribution, do we expect that the climate system can produce heat waves as large as the 2021 event?

Qualitatively similar results with the 1959-2023 ERA5 analysis

Assuming climate change has mostly shifted the temperature distribution, do we expect that the climate system can produce heat waves as large as the 2021 event?

