Carolin Mehlmann

A hybrid ice model - Including small scale icebergs into sea-ice models

10.09.2024

Institute of Analysis und Numerics Otto-von-Guericke-Universität Magdeburg, Germany

[Introduction](#page-1-0)

[Hyprid ice-mélange model](#page-8-0)

[Numerical](#page-18-0) results

Ice-mélange

- icebergs store a lot of freshwater k
- Antarctic & Greenland Ice Sheet mass loss has ٠ increased (Kjeldsen, 2015 & Depoorter, 2013)
- climate models usually do not resolve nor ٠ parameterize ice mélange

Aim: efficiently model ice mélange in climate models

The Economic Times: NASA scientists fly over Greenland to track melting ice, visited: 26.11.2020.

Ice-mélange model

Parameterization

• e.g buttressing effect (Schlemm and Levermann 2021)

Particle models

- sea-ice floes and icebergs are particles (Robel 2017)
- numerically to expensive for climate models

Figure source: Robel 2017

Ice-mélange model

Continuum models

- single continuum e.g. (Burton et. al 2018)
- joint continuum sea-ice and icebergs for cavitating fluid (Vankova and Holland 2017)

Figure source: Vankova and Holland 2017

How to efficiently include icebergs?

Aim: represent icebergs as particles (∼ 100s **m) in large scale climate simulations (**∼ 10s **km)**

How to efficiently include icebergs?

Aim: represent icebergs as particles (∼ 100s **m) in large scale climate simulations (**∼ 10s **km)**

Hybrid ice-mélange model

Idea: joint continuum: icebergs as thick compact pieces of sea ice

Goal:

- realization in the **viscous-plastic** sea-ice model
- represent icebergs by **particles** and couple them to the continuum

Figure: coupling sea-ice continuum and iceberg particles

Hyprid ice-mélange model

Variables:

- ice-mélange velocity **v** ∈ R 2
- icebergs are modeled by particles $\{p\}$ with radius r_p and height h_p
- ice-mélange thickness H and concentration A

$$
H(x, y, t) = \begin{cases} H_{ice}(x, y, t) & \text{if } p(x, y, t) \notin (x, y) \in \Omega, \\ h_p & \text{if } p(x, y, t) \in (x, y) \in \Omega. \end{cases}
$$

$$
A(x, y, t) = \begin{cases} A_{ice}(x, y, t) & \text{if } p(x, y, t) \notin (x, y) \in \Omega, \\ 1 & \text{if } p(x, y, t) \in (x, y) \in \Omega. \end{cases}
$$

Momentum equation

$$
\rho_{\text{ice}} H \partial_t \mathbf{v} = \underbrace{\text{div}(\boldsymbol{\sigma})}_{\text{rheology}} + \underbrace{\mathcal{F}}_{\text{external forces}}
$$

Modified rheology

$$
\boldsymbol{\sigma}=2\eta\dot{\boldsymbol{\epsilon}}+(\zeta-\eta)(\dot{\boldsymbol{\epsilon}}_{11}+\dot{\boldsymbol{\epsilon}}_{22})I-\frac{P-T}{2}\delta_{ij}, \qquad (1)
$$

with the bulk and shear viscosities

$$
\zeta = \frac{P + T}{2\Delta(\mathbf{v})}, \quad \eta = \frac{\zeta}{4} = \frac{P + T}{2\Delta(\mathbf{v})4}.
$$
\n
$$
\tau = \begin{cases}\n0 & \text{if } p(x, y, t) \notin (x, y), \\
P^*H & \text{if } p(x, y, t) \in (x, y).\n\end{cases}
$$
\n(3)

Iceberg pushed against a wall

(a) standard VP rheology

Idea: Include tensile strength for icebergs into the rheology

Viscous-plastic rheology

Note: Tensile strength has been introduce to the visous-plastic model e.g. landfast ice: König and Holland (2010); modification of the rheology Ringeisen et. al (2021)

Modified rheology for iceberg

Modified rheology for iceberg - diverging wind field

(a) standard VP rheology (b) VP rheology with tensile strength

Modified rheology for iceberg - shearing wind field

ice-mélange thickness (m) 1.0 2.0 30 40 50 60 70 80 90 100

(a) standard VP rheology (b) VP rheology with tensile strength

Coupling of particle and continuum methods

Let K be a grid cell:

• iceberg concentration and thickness

$$
A_{\text{iceberg}}|_{K} = \sum_{p \in K} \frac{\pi r_p^2}{|K|}, \quad H_{\text{iceberg}}|_{K} = \sum_{p \in K} \frac{h_p \pi r_p^2}{|K|}, \tag{4}
$$

• ice-mélange concentration and thickness

$$
A|_{K} = \min(A_{\text{iceberg}}|_{K} + A_{\text{ice}}|_{K}, 1),
$$

\n
$$
H|_{K} = H_{\text{iceberg}}|_{K} + H_{\text{ice}}|_{K}.
$$
\n(5)

Coupling of particle and continuum methods

• **tensile strength**

$$
\mathcal{T} = \begin{cases} 0 & \text{if } A_{\text{iceberg}}|_K < \frac{\pi (0.5\sqrt{|K|})^2}{|K|}, \\ cP^{\star} H A_{\text{ice}} & \text{else.} \end{cases}
$$

• **iceberg motion**: divergent wind field

without sea-ice with sea-ice

 (7)

Iceberg coupling

- The particles are advected based on the continuum ice-mélange velocity **v**.
- Inelastic collision model for overlapping particles

Figure: Closeup of ceberg-iceberg interaction.

[Hyprid ice-mélange model](#page-8-0)

Subgrid scale grounding

Tensile strength for icebergs

- three arid cells filled with ×. icebergs (4096 per cell)
- $r_0 = 125m$
- 16 km grid cells é.
- ocean forcing from the ٠ left to the right
- ٠ lower two grid cells filled with grounded icebergs

Tensile strength for icebergs

Advection test: Icebergs trapped in sea-ice

Model limitations and perspectives

limitation

- iceberg size much smaller than horizontal grid cell
- icebergs are round disks
- threshold for the tensile strength

perspectives

- coupling of continuum sea-ice models and particle iceberg models
- model landfast ice in the Southern Ocean poorly represented in climate models

Perspective: future land fast ice projections

- need to include a realistic presentation of fast ice in climate models
- need to include moving icebergs

Alternative: Sea-ice floes and icebergs as particles

Set of particles $p = \{p_{\text{seaice}}, p_{\text{iceberg}}\},\$

circles: $red = icebergs$, white= sea-ice floes

Coupling to the continuum momentum equation

continuum mélange thickness

$$
H|_K = \sum_{p \in K} \frac{h_p r_p^2}{|K|},\tag{8}
$$

continuum mélange concentration

$$
A|_K = \min\left(\sum_{p \in K} \frac{\pi r_p^2}{|K|}, 1\right) \tag{9}
$$

To activate the tensile strength for the icebergs in the momentum equation :

$$
\mathcal{T} = \begin{cases} 0 \text{ if } \sum_{p_{\text{iceberg}} \in \mathcal{K}} \frac{\pi r_{p_{\text{iceberg}}}}{|K|} < \frac{\pi (0.5 \sqrt{|K|})^2}{|K|}, \\ P^{\star} H^m \text{ else.} \end{cases} \tag{10}
$$

Simple advection test: without particle collision

Subgrid iceberg grounding: sea-ice floes and icebergs as particles

Tensile strength for icebergs

Summary-Development of a hybrid ice model

- joint continuum of sea-ice floes and icebergs
- modeling of icebergs via particles on a sub-grid scale
- coupling of continuum and particle method via a particle in cell scheme
- context of the viscous-plastic sea-ice model

