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• CMIP3: Multimodel average trend 2 - 6 times greater than observations

• CMIP5: Multimodel average trend 2 - 3 times greater than observations

Wallace et al. (2000); Karl et al. (2006); McKitrick et al. (2010); Christy et al. (2010); Santer et al. (2017a,b)

Climate models exhibit greater tropical tropospheric warming 
than satellite observations

The problem:
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Global mid-tropospheric warming [K decade-1]
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Figure reproduced from McKitrick and Christy (2020); see also Tokarska et al. (2020)
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Are climate models too sensitive?
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Models still exhibit ~2x too much 
model warming (on average)

Po-Chedley et al. (2021)



Niño 3.4 Trend [K decade-1]
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How much did internal variability reduce satellite-era 
warming of the tropical troposphere?

The imprint of multidecadal variability

Casas et al. (2022); Mitchell et al. (2020); Suárez-Gutierrez et al (2017); Kamae et al (2015); Kosaka and Xie (2013)



Quantifying satellite era internal variability

Sample lots of 36-year time periods
(across 150+ year historical period, different 

models, and ensemble members)

Train machine/statistical learning to 
predict the a) forced and b) unforced 
component of tropospheric warming 

based on the surface warming pattern
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Internal

Use a leave-one-out approach

Train
Test

Apply climate-model based learning to 
observations to estimate real-world forced and 

unforced tropical tropospheric temperature trend

X y

PLS Regression
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Quantifying satellite era internal variability
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Predicted Trend [K decade-1]

Internal variability component of tropical 
tropospheric warming [1979 – 2014]

UKESM1-0-LL (r = 0.89 / n = 15)
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Quantifying satellite era internal variability

Tropical tropospheric warming expectation 
for 2.4 ≤ ECS ≤ 3.6
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Running average

CMIP6

Fasullo et al. (2022); Rodgers et al. (2021)

CESM1
CESM2
BEST

Su
rfa

ce
 T

em
pe

ra
tu

re
 (3

0 
-9

0o N
) [

K
]

1920       1940      1960       1980       2000       2020

CESM1
CESM2
BEST
CESM2-SBB

40 - 70o N

Impact of biomass burning aerosol
emissions bias on tropospheric

warming (1979 - 2014)

The role of forcing biases

Biomass Burning Aerosols Emissions Issue enhances tropical 
tropospheric warming by 0.04 K decade-1.



A role for observational biases

NOAA
UW / RSS
UAH

Tropical moistening versus warming

Santer et al (2021)
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SST and water vapor observations are most 
consistent with the upper-end of MSU dataset trends

Tropical Tropospheric Warming
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Summary

1

2

Removing biomass 
burning aerosol

discontinuity

Removing internal 
variability from 
satellite observations

• Results indicate that internal variability has offset the forced component 
of warming by about 25%

• Largely resolves model-observational differences (for ECS ~3K)

• Results depend on the reliability of climate model simulations

A bias in the biomass burning aerosol emissions enhances warming in 
the CESM2 large ensemble; may effect other CMIP6 models

Some satellite datasets have tropical tropospheric temperature trends 
that are lower than expected, possibly due to unresolved biases
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CMIP6
Models

Subsetting for models
With ECS ~3





Extra



PLS predictions versus actual tropical tropospheric warming. 



Fingerprint maps and observed warming.



Contextualizing ML results with the total trend, the CMIP6 distribution, and ECS. 



Effect of biomass burning aerosol bias on tropospheric warming.



Results across methods.



Observed warming.



Results with SST trends as predictors.



Results over 1979 - 2021.



Results on global scale.



PLS Regression components.



Model warming relative to variability.



Mean squared error across parameter space.



Results across parameter space.



Ridge regression fingerprint maps.



Ridge regression alpha sensitivity.



Estimated internal variability compared to
historical and piControl variability distributions.


