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X/ Climate Change will alter Ocean Mixing
* Mixing stratified fluid takes energy

— Energy sources for diapycnal mixing will change in
an evolving climate, including the external and
internal tides

— Evolving stratification changes turbulent energetics

* Fixed diapycnal diffusivities will be replaced in
GFDL’s new MOM6-based OMS/CMS/ESM5
hierarchy of global ocean-climate models by
parameterizations of energy inputs and an
Integrated Implicit Energetics Approach



Diapycnal Mixing, Turbulent Kinetic Energy
and the Osborn Relationship

A simplified, dominant balance for the turbulent kinetic energy budget allows
(hard to observe) turbulent vertical buoyancy fluxes to be related to the (more
casily inferred) dissipation of turbulent kinetic energy. (Osborn, JPO 1980)

A typical turbulent kinetic energy (TKE or E) balance equation: £ = %(”'2 +v" + W’z)
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In the interior ocean, the local balance often works pretty well:
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P=—iN’+¢ P = Production of TKE
The flux Richardson number (Rf =xN°/ P) is typically less than a critical value of ~0.15.
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The buoyancy frequency and dissipation can both be determined observationally.



The Osborn Relationship can be used to estimate
diffusivities from observed small-scale dissipation

Estimated Ocean Diffusivity Based on ARGO Observations | K = ———
Average Diffusivity 250-1000m (m?2s™)
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Updated from Whalen, Talley and MacKinnon, GRL 2012



@ Parameterizing breaking high-mode internal tides
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%/ Mixing in a stratified water columns takes energy.

. . — Fg — Rf
e Osborn Relationship: k= TR T

Turbulent Kinetic Energy supplies the local potential
energy change due to the local buoyancy flux.

* New Implicit Energetics approach:

Turbulent Kinetic Energy supplies the potential
energy changes throughout the entire water column
integrated over a timestep due to the local diffusivity.

These are the same in the limit where Ar—0.



@ Potential Energy of a Hydrostatic Column (Exact)

Specific Volume: R = i
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Integration by parts:
* Linear in specific volume J“ v =y — _[V du

* Fixed bounds of integration in pressure



@ PE Change from Mixing & Conversion to

Change in potential energy due to diffusivity x; at interface k:

TKE

dPE _ (" d_Rl pdp Specific Volume: R = 1
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A fraction n*~0.07? of released PE is available to drive

more mixing, but energy released by contraction of the

column radiates as gravity waves:
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Mixing 1s done for conservative temperature and salinity:
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The tridiagonal equations for the total implicit evolution of &and §
profiles can be differentiated with x; and integrated over all the layers
above & below without having to re-traverse the water column.




V@Trldlagonal Solvers for Implicit Mixing
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Three Valid Tridiagonal Solvers for Implicit Mixing
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@ Vertically Integrated Potential Energy Change due to Diffusion
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A properly written tridiagonal
solver for the implicit finite

volume tracer diffusion equation:
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The buoyancy frequency does not appear anywhere in these expressions!
The only approximations here are hydrostatic balance and that the thermal expansion and

haline contraction coefficients of a layer don’t change much over a timestep.



v Fully implicit expression for PE change:
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V Fully implicit expression for PE change:
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With weak stratification, energy to mix buoyancy does not bound mixing of other
quantities; something else 1s needed for a reasonable upper bound on diffusivities.
Perhaps a vertical mixing length-scale, L, and turbulent velocity, w* that can be
combined to give a diffusivity?
K(z) = Gw™(2)L(2)
Subject to several considerations:

|%| < 1 (analogous to the law-of-the-wall)

* L goes to 0 at solid boundaries or where stratification suppresses mixing
» A turbulent velocity could itself be related to a turbulent energy flux or stress:

.~ APER41/2 dF
e.g., if —¢ 2 = Azyr1/2 %, perhaps w* «

3 FTKE/p

* The turbulent mixing can auto-diffuse the turbulent velocity and length scales?
The details of the peak diffusivity will depend on the mixing process.




Energetic considerations can be used with the new integrated approach to
parameterize many of the mixing processes in the ocean.
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@ An ‘ePBL’ Framework: The energetics concept of a Kraus-Turner-
Niiler boundary layer scheme with a KPP-like finite diffusivity

Kraus-Turner-Niiler Bulk Mixed Layer: Integrated energetics is used to
determine the boundary layer depth (%) or entrainment rate (wg).

Mixing Mechanical Convection

gg’max(wE,0)+§max(BO,0) = mu. —n, gmin(Bo,O)

ePBL: Similar integrated energetics concept, but with finite turbulent mixing

coefficients (diffusivity & viscosity); Hj, is the depth at which the TKE is used up:

Mixing Mechanical Convection

max(NzK( ),0 )dz = mu, —nJ. mm NK O)d

_Hbl

This uses the shorthand: NzK = —I IPD d—Rlpdp dx.
0 dx. g

Kraus-Turner-Niiler
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ePBL

Mixing Coefficients: K;(z) = Caw(z)L(2)
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Mixing Length: L(z) = (zo + |z])max o\ "H
1/3
Velocity Scale: w(z) = (j w'b’ dz) + Cyu, |1 —a-min <1 —
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See Reichl and Hallberg (2018, Ocean Modelling) for full details.
See also Li, Reichl, et al., (2019, JAMES) for an Intercomparison.



@ Energetics Planetary Boundary Layer (ePBL) numerics:
Robust model solution to grid resolution and time-step

A simple wind-driven test case of mixing into a stratified water column

demonstrates the very weak dependence on vertical resolution and timestep
arising from the integrated energetics approach.

1-d Wind-driven Simulations 7 =0.25 N/m?
f=20sin(60) s!
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@ Results: ePBL (here with modifications for Langmuir Turbulence)
contributes to improved Mixed Layer Depths in climate models
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A Bottom Boundary Layer version of ePBL is now available in MOMS6.




@ Shear-driven Mixing in a (Bottom) Boundary Layer

Observed profiles from the Red Sea outflow plume
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@The Jackson et al. (2008, JPO) Parameterization of Shear Instability

in Statistical Steady State
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Take-away Messages

* Climate change will alter ocean mixing
— Mixing stratified fluid takes energy

— Energy sources for mixing will change, including
the external and internal tides

— Evolving stratification changes turbulent energetics

* The option to use the Integrated Implicit
Energetics Approach is being applied to a wider
range of mixing processes in MOMG6

— Bottom Boundary Layer ePBL - now available
— Full column energetics-based mixing - underway
— Revised Jackson stratified shear-mixing - planned



