tkas Gu
ser, Felix JagerRyan S. P&
Zurich, Switzerland
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Confronting ESMs with observations:
* Observational uncertainties

» Separating sources of biases (forcing; thermodynamic vs dynamic
biases)

Drought-climate feedbacks

» Relevant processes

* Drought trends in ESMs vs observations

» Potential biases in global drought-carbon feedbacks

Some open questions
* Drought relevance for record-shattering heatwaves
« 2023 Record temperatures

Conclusions



pservational uncertainties

Drought trends (dry-season soil moisture), 2000-2020

ERAS root zone ERAS5-Land root zone MERRA-2 root zone

~0.0020 ~0.0015 ~0.0010 ~0.0005 0.0005 0.0010 0.0015 0.0020
m3 m-3 year-1

There are also large uncertainties in observational products!

(Hirschi et al, submitted to HESS)
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Drought trends (dry-season soil moisture), 2000-2020

ERAS root zone MERRA-2 root zone

T T T
~0.0020 -0.0015% ~0.0010 «0.0005 0.0005% 0.0010 0.0015 0.0020

m3 m-3 year-1

dbservational uncertainties

Comparison with ground
observations suggest
some biases in MERRA-2
product

(NB: 2-m temperatures
are not assimilated in
MERRA-2!)

(Hirschi et al, submitted to HESS)



arating sources of biases

Is the ESM consistent with

soil moisture .
observations?

A

— Model simulation

Observations

v

time



soil moisture

y

parating sources of biases

Is the ESM consistent with
observations?

A

1) Consider observational
— Model simulation Spread

2) Consider model spread
(several realizations)

Observations — 3) Process-based evaluation of
single components (e.g.
g dynamics vs
time thermodynamics, land vs

atm vs ocean, extremes vs
mean, forcing)

3-step evaluation



arating sources of biases

soil moisture 1) Need to consider
4 observational spread ...

Obs #3

— Model simulation
% Obs #2
Observations #1

time

v



soil moisture

y

A

N — Model simulation
% Obs #?2
Observations #1

v

time

arating sources of biases

1) Need to consider
observational spread and
possibly exclude some
observational products with

biases



soil moisture

y

A

v

Model realization #1

Obs #2

Observations #1
Model realization #2

time

1) Need to consider
observational spread and
possibly exclude some
observational products with
biases

2) Consider multiple
realisations from climate

model (not only single runs)
(Deser et al. 2012, Nature Climate Change)



soil moisture

y

A

— Model realization #1

Observations #1

Model realization #2

»
»

time

eparating sources of biases

1) Need to consider
observational spread and
possibly exclude some
observational products with
biases

2) Consider multiple
realisations from climate

model (not only single runs)
(Deser et al. 2012, Nature Climate Change)

NB: The source for some of the model spread can be
isolated and constrained (atmospheric dynamics)



soil moisture

A

=

=

v

Simulations with
atmospheric nudging

Obs #2

Observations #1

time

eparating sources of biases

1) Need to consider
observational spread and
possibly exclude some
observational products with
biases

2) Consider multiple
realisations from climate

model (not only single runs)
(Deser et al. 2012, Nature Climate Change)

3) Process-based evaluation
of single ESM components
(some with obs constraints,

others not)
(e.g. Wehrli et al. 2018, GRL)
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ADVANCING
EARTHAND
I‘\\?\I SPACE SCIENCE

Geophysical Research Letters &

RESEARCH LETTER Assessing the Dynamic Versus Thermodynamic Origin of

MRz EeineLosz2n Climate Model Biases
Key Points: 2 r 5 g : . :
. Thermodynamical versus dynamical Kathrin Wehrli'""', Benoit P. Guillod"?" "', Mathias Hauser'" "', Matthieu Leclair!, and
sources of biases can be identified Sonial. Seneviratne'
using atmospheric nudging of
horizontal \{vinds in.a cl'imate model Tinstitute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich,
: A.tmOSPhe"C i L Switzerland, 2Institute for Environmental Decisions, Department of Environmental Systems Science, ETH Zurich, Zurich,
simulated temperature and citoedand
witzerlan

precipitation in CESM; however,

Wehrli et al. 2018, GRL



 Dymamies.vs thermodynamics

Interactive Nudged winds
atmosphere

med(bias CTL) med(bias NDG)

CESM 1.2

Winter [DJF]

(comparison to CRU TS, 1982-2021; mean bias)

Spring [MAM]

A large fraction of the biases remain,
i.e. are of thermodynamic origin!

Summer [JJA]

(Wehrli et al. 2018, GRL)



amies.vs thermodynamics

Interactive Nudged winds
atmosphere

med(bias NDG)

med(bias CTL)

2> '. _A_‘
7 (W X
-~ ) c

CESM 1.2

(comparison to ERA-interim (Txx, Tnn) and MERRA-2
(CDD, Rx5dday), 1982-2021; mean bias)

TXx

TNn

A large fraction of the biases remain,
i.e. are of thermodynamic origin!

CDD

RXS5day

(Wehrli et al. 2018, GRL)
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EXTREMEX simulations: 2009-2015/2016; CESM, EC-EARTH, MIROC

Several set-ups, either with prescribed atmospheric winds, SST or soil moisture (contribution to climate
extremes)

NB: New simulations with CESM2.1.2 and ERA5 atmospheric winds are currently on-going (D. Schumacher,
ETH Zurich)

Earth Syst. Dynam., 13, 1167-1196, 2022
https://doi.org/10.5194/esd-13-1167-2022 Earth System
© Author(s) 2022. This work is distributed under Dynamics
the Creative Commons Attribution 4.0 License.

The ExtremeX global climate model experiment:
investigating thermodynamic and dynamic processes
contributing to weather and climate extremes

Kathrin Wehrli!, Fei Luo®3, Mathias Hauser!, Hideo Shiogama4, Daisuke Tokuda’, Hyungjun Kim?>%7,

Dim Coumou?3, Wilhelm Mays, Philippe Le Sager3, Frank Selten3, Olivia Martius®10-11,
Robert Vautard!2, and Sonia I. Seneviratne!

(Wehrli et al. 2022, ESD)
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A e =SERARtING SOUrces ofsbiases: Radiative forcing

Temperature trends in Western West-Central Europe

nggs‘[‘)’g;e;f’f:"ing WWCE summer warming WWCE warming (1980-2022)
AT (°C) ) AT (°C) CMIP6 (n=43) @ ERAS5 I CMIP6 (n=43)
g0 — ERAS —— ERAS AT @ E-OBS W CORDEX (n=49),
~— model median L [ (°C) doc
25+ model QOS-Q05 25 - model Q05-Q95 [
— hottest model | — nhottest model 31
2.0 2.0 '..‘ | - 0.6
1.5 154 2+ 8 ) M 1 °
1.0 1.0 4 ’ i B . Y
1{ A% g : -
0.5 1 0.5 ': - 0.2
0.0 - 0.0 04— - - 0.0
-0.5 T T T T T -0.5 T T T T T ' N M ¥ 4
o 0 DJF MAM  JJA SON annual
R L S A G s L L
time (year) time (year)

(Schumacher et al., submitted; Preprint:
https://www.researchsquare.com/article/rs-3314992/v1)
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Temperature trends in Western West-Central Europe

AT (°C) Total Dynamic Thermodynamic (*C/dec)
2.5 1 ‘ . . - 0.6
. '
2.0 1 . -
1.5 4 | G - . - 0.4
1.0 4 y i
0.5 4 - ; .
0.0 4 R - 0.0
0.5 1 - 1
" : ' F -0.2
) o ) ) ) ) s ) ) )
& N 40 & &° 4% & 85 4%
R 2 & ™ K
&) < o

dfsbiases: Radiative forcing

Most of the observed
warming is of
thermodynamic origin
(with some contribution of
dynamic origin)

(Schumacher et al., submitted; Preprint:
https://www.researchsquare.com/article/rs-3314992/v1)
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sbiases: Radiative forcing

CORDEX regional thermodynamic warming
AT, ("C) as f(AR , Jfor JJA 1980-2022

1.2 4
Aerosols o
time-avolving
bl e Constant aerosols in most of the
- ERAS 9 CORDEX simulations: lead to
‘ - 7__,5*- * substantial bias in temperature and
L ‘ radiation simulations! (important also
a4 |Dmew . [ for other regions!)
' o
0.2 4 i
| —
«
0.0 —F 1
©
=() 2 =
0 3 10 15 20
AR, (Win¥) (Schumacher et al., submitted; Preprint:

https.//www.researchsquare.com/article/rs-3314992/v1)
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Drought-climate feedbacks

» Relevant processes

* Drought trends in ESMs vs observations

» Potential biases in global drought-carbon feedbacks

Some open questions
* Drought relevance for record-shattering heatwaves
« 2023 Record temperatures

Conclusions
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The IPCC ARG distinguishes
3 drought types Climatic drivers o 4 Temperature

¥ Precipitation 4 Radiation 8_—
<is l: O #co:
& o 9, A

qd
. ’ ®e
l D c C ¥ l:umld:y plant
INTERGOVERNMENTAL PANEL ON ClimaTe change Q wateruse  growth
$ efficiency o X
Climate Change 2021 . 1 0 v o J
. . . Stowpack ' V —‘,—)
The Physical Science Basis
Evaporative demand & Evapo-
Summary for Policymakers vapor pressure deficit ranspdrallon
Water availability
Q Groundwa'er Soll Moisture
Streamflow lakes, reservoirs
P S -

Agricultural &
Ecological
J

Drought types >

~@

Meteorological ~ Hydrological

L 1
1
Impacts Environmental Socioeco ic
(environmental drought, (crop failure, livestock
tree mortality, fire, habitat mortality, low walter supply,
loss, erosion, water quality) less hydropower)

(IPCC ARG, Chapter 8; Douville et al. 2021)
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reecological droughts

Regional changes in agricultural and ecological drought since 1950s (soil moisture, water-balance estimates,
measures combining precipitation & atmospheric evaporative demand)

c) Synthesis of assessment of observed change in agricultural and ecological drought
and confidence in human contribution to the observed changes in the world’s regions

Small
Islands

Type of observed change

in agricultural and ecological drought —_—

America

] Increase (12)

@ Decrease (1)

2 | Low agreement in the type of change (28)

J Limited data and/or literature (4) ifn"c‘;‘c'a

8

Confidence in human contribution
to the observed change

eee High ;
) South
ee Medium America
o Low due to limited agreement
o Low due to limited evidence

Small
Islands

Australasia

Type of observed change since the 1950s

Dominant signal shows drying
Strong attributable signals in some regions (MED, WNA)

(IPCC AR6 SPM, Figure SPM.3; Based on Chapter 11, Seneviratne, Zhang et al. 2021)



= IPCC assessment omhistogiCal chafges-insagroecological droughts
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“Human-induced climate change has contributed to increases in agricultural and ecological
droughts in some regions due to increased land evapotranspiration (medium confidence)”

c) Synthesis of assessment of observed change in agricultural and ecological drought
and confidence in human contribution to the observed changes in the world’s regions

Europe

Small
Islands

Type of observed change

in agricultural and ecological drought iR

America

] Increase (12)

Q Decrease (1)

: | Low agreement in the type of change (28)

J Limited data and/or literature (4) i;"c‘;‘cla

Confidence in human contribution
to the observed change

eee High ;
) South
ee Medium America
o Low due to limited agreement
o Low due to limited evidence

Small
Islands

Type of observed change since the 1950s

Dominant signal shows drying
Strong attributable signals in some regions (MED, WNA)

(IPCC AR6 SPM, Figure SPM.3; Based on Chapter 11, Seneviratne, Zhang et al. 2021)
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ntonhisStorieal.changes in extremes

Region and
Drought Types

Observed Trends

Detection and
Attribution; Event
Attribution

Projections

+2°C

.
. o | e e Weather and Climate
Low confidence:
evidence because of lack evidence because of lack evidence because of lack
AGR | imitedevidence,gven | Low confidencerLimited | ofsuuges Wakhetal, | ofstodies(Wabhetol, | of st ok e, .
| i | | 20 0 el et Extreme Events in
etal, 2020) changes in soil moisture in changes in soll moisture in changes in soil molsture in
bakond Mot CMIPS (11.5M) CMIP6 (11.5M) CMIPS (11.5M) . .
e i a Changing Climate
Limited evidence ghven Low confidence: Limited Low confidence: Limited Low confidence: Limited Low confidence: Limited
HYDR | limited number of evidence because of lack | evidence because of lack | evidence because of lack | evidence because of lack
studies and limited data | of studies of studies of studies of studies
| (Walsh et al, 2020)
A0 Z Medium confidence:
Mm:'::;:' Increase. With medium Medium confidence: High confidence: Increase.
v confidence CMIPS and Increase. With medium With high confidence
PROCOMIEC Wb CMIPS show a deckine in confidence CMIPS and CMIPS and CMIP6 (and inati %
m”m”:‘ Low confidence:Mixed | winter and summer total | CMIPGshow adeclinein | EURO-CORDEX) show m"imu"g;::‘:x';::% — (Cinaday
wends n the path signals. There are mixed peecipitation and increase in | winter and summer total adecline in wintes and 2 B Zhang
2 . signals within the region number of COD ipi L summer
] d I fic ion che number of CDO (percentage | and increase in number of Lead Authors:
onstetal, 2014a;Stagge | |t ey o o i s T | et A ot DD, Orought intesity and Muhammad Adnan (Pakistan), Wafae Badi (Morocco), Claudine Dereczynski (Brazil),
wer | St 2007 Matibos meteorological drought with Iigh confidence Nager | degree oflocal warwiog frequency increase with Alejandro Di Luca (Australia/Canada/Argentina), Subimal Ghosh (India), Iskhaq Iskandar
::!n:: m? 2 over MED (Kelley et al, In June-July-Asgust (JA) s with high confidence canfidence, particuacly in (Indonesia), James Kossin (United States of America), Sophie Lewis (Australia), Friederike Otto
n e o 2015; Gudmundsson and than December-January- larger in 1A than DJF) the southern Mediterranean (United Kingdom/Germany), lzidine Pinto (South Africa’Mozambique), Masaki Satoh (Japan),
o A % Seneviratne, 2016; Knutson | February (DJF) (interactive (nteractive Atlas, Cardell (11.5M; Interactive Atlas; Sergio M. Vicente-Serrano (Spain), Michael Wehner (United States of America), Botao Zhou (China)
M’ m’m 'ml. and Zeng, 2018; Wikox Atlas, Cardell et al, 2020; | etal 2020;lietal, 2021, | Samuels et al, 2018; Cardell
2015 ©r o etal, 2018) Uetal, 2021; 11.5M). 11.5M). Also weak increase | et al, 2020; Cook et al,
o, 2016 MedECC, Aso weak increase in in metecrological drought 2020; Driowech et al, 2020;
2000, PR meteoeological drought based on SPI (Touma et al, Spinoni et al, 2020; Coppota
el 2020::' 5 "":*m‘ based on P! (Touma etal, | 2015;L Xuetal, 2019) etal, 2021a; U et al, 2021)
peozon etal,2021) 2015; L Xu et al, 2019)
(MeD)*
Medium confidence: of
8 Medium confidence:
ok attibuion of Increasing | o increase for High confidence:
- : U0 In ectlogin med pre-industrial and recent Drought increase for
Increase. Ag:\:ulamﬁmd sast basakads preindustrial and recent
on soil moisture and water-
Increases in probability past baselines
uuhm:tydwuu g ([t [ e “ » -
: 2015; Garcia- & E
g | ST | e Large tables” in Chapter 11, pages 1613-1705
based on soll moisture AL R 20 | Svilabilty during drought Decreasing sod water
AGR | and water-balance deficits, J % events compared to avaiability during drought
ECOL | b weakers signals in Garcla-Herrera 1971-2000, even when events compared to
some studies (Greve etal, | et al (2019): Attribution accounting for adaptation | 1971-2000, even when
2014; Hanel et al, 2018; of the 2016-2017 drought | to mean conditions m’"'::"m
Garcia-Herrera et al, 2019, | in southwestern Europe (Samaniego et al, 2018) to mean conditions; S 1
it sl s I don et eneviratne, Zhang, et al. 2021
Padrén et al, 2020; on NCEP trends in soil npar 5por
3 duration and frequency a+1.5°C (Samaniego
Lo LSS e S0 s compared 10 1971-2000 i
anologues 10 2016~ (L Xuetol, 2019) etal, 2018)
2017 event 2
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Detecting the human fingerprint in the summer 2022
western—central European soil drought

Dominik L. Schumacher', Mariam Zachariah?, Friederike Otto?, Clair Barnes?, Sjoukje Philip>,
Sarah Kew>, Maja Vahlberg*, Roop Singh*, Dorothy Heinrich*, Julie Arrighi*>%, Maarten van Aalst*%7,
Mathias Hauser!, Martin Hirschi!, Verena Bessenbacher!"'3, Lukas Gudmundsson!,

Hiroko K. Beaudoing®?, Matthew Rodell®, Sihan Li'?, Wenchang Yang'', Gabriel A. Vecchi'!!2,
Luke J. Harrington'3, Flavio Lehner'*!517, Gianpaolo Balsamo'®, and Sonia I. Seneviratne'

Summer surface soil moisture

(@) ERAS5-Land (2022)
180 120°W 60°'W 0° 60°E 120°E 180°

(b) Northern extratropics

m/m?®
0,010 -
0.005 -
0,000

~0.005 1

I e
1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020
ERAS —— GLDAS—CLSM —— EFAS-historical —— ESA-CCl-filed
—— ERAS-Land —— SoMoml —— RSSSM —— ESA-CCI-CLIMFILL

(Schumacher et al. 2024, ESD)
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Detecting the human fingerprint in the summer 2022
western—central European soil drought

Dominik L. Schumacher', Mariam Zachariah?, Friederike Otto?, Clair Barnes?, Sjoukje Philip>,
Sarah Kew?, Maja Vahlberg*, Roop Singh*, Dorothy Heinrich?, Julie Arrighi*>¢, Maarten van Aalst*57,
Mathias Hauser!, Martin Hirschi!, Verena Bessenbacher!"'3, Lukas Gudmundsson!,

Hiroko K. Beaudoing®?, Matthew Rodell®, Sihan Li'?, Wenchang Yang'', Gabriel A. Vecchi'!!2,
Luke J. Harrington'3, Flavio Lehner'*!517, Gianpaolo Balsamo'®, and Sonia I. Seneviratne'

(a) Probability ratio (b) Change in intensity
001 01 1 10 100 1000 10000 100000 1x10® 20 15 10 5 0 5
ERASLand [ — = [—
GLDAS-CLSM [ 1 ] L T ]
observations e e —
CESM2-WACCM historical-s5p585 (1) ) NB: ESMS appear tO
CanESMS5 historcal-ssp585 (1) 3 U]

underestimate the observed
drying signal!

EC-Earth3-CC historical-ssp585 (1)
EC-Earth3-Veg-LR historical-ssp585 (1)
HadGEM3-GC31-LL historical-ssp585 (1)

MPLESM1-2-HR historical-ssp585 (1)

MPI-ESM1-2-LR histoncal-ssp585 (1)
models

=T
syrahosis i —

Figure 6. Synthesis for WCE root zone soil moisture. Synthesized (a) probability ratios and (b) intensity changes (%) when comparing the
return period and magnitudes of the 2022 summer root zone soil moisture for the WCE region in the current climate and a 1.2 °C cooler
climate. Note that while the employed observation-based products are restricted to 1950-2022, for models we make use of the additional
available data for the statistical analysis (1850-2022).

(Schumacher et al. 2024, ESD)
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T Dki¢ ‘Discrepai 5'betweensESMs and observations

Observed humidity trends in dry regions contradict climate models
BNCAR Isia Simpson’, Karen McKinnon?, Daniel Kennedy'?, David Lawrence' , Flavio Lehner'4 , Richard Seager® & & Mare
"National Center for Atmosphecic Research, *University of California Los Angeles, *University of California Santa Barbara, “‘Comell University, *Lamont-Doberty Earth Obsecvatory

T
- T Is the ESM-obs

Why should we care sbout near surface atmospheric humidity?
Observation-based humidity and vapor pressure Since 1960 vapor pressure (VP)
has deciined aver the US

(1) Humidity is an important quanty in relason to wikifre' + ERAS', ISD stations®, HadISDH homogeeized station data®

(0 Hurmichy con provid e ncicako of bow processms of elevence Southwest. HadISDH and ERAS
1o 5uch a3 VAPOYANSPYALon O MOistLe Otiaarsation; based fraciphifion agree (Fig 1a.b).

ummmmm + GPCCY, GPCC", CRUTSY

What 3o we expect humidity to do? near surtace air

===z | discrepancy in

We expect atmospreni water vagor 10 nise under warme because a * ERASand BEST"
e amosghere can hokd e ks, Whethe oo Ariciny Index
the rate expocted rom Clausius Clapeyron scaling (~7%K), + PIPET trom the TerraClim** cataset
m.hnmmm-ﬂmmmmu s amidaicns - - .
Ovor anc, cenaie mocdols o show sight recuchons i reeive + CMIPG historical 1980 10 2014 and SSP5-8.5 1o 2020 a l I IOS erIC II I Il I
humidty out 10 2100, but they S Sugost That waler vapor shoukd + CMIPS AMIP simulations 1o 1960 to 2014
or
RS i gempret. AU St it SUGLIVSY S0 ol Svpoe + LENS2: CESMZ large ensembla’™ (100-merms)

has ot risen as much in models as observations? 434

Hore wa compara historical near surface (2m) humidity trands in Earth
System Models, with those in Observations and demonsirate a major
ardy,

thatis y

+ GOGAZ: CESM2 GOGAAMIP simufations, 1980 - 2020 (10-mems)
We consider ¥ends in anrual means from 1980 1 2020 uniess
Statd oParwise.

West-Central Europe part

GLOBAL TRENDS
p— of a global feature?

[, Prociitation vends (Fig Sa).

II Ordering the months of e year according
0 climatological aridity, we can see he
discropancy also happens in humid regions,
but only during the most arid months of e

e " v your (Fig S64).

(See poster of Isla Simpson “Observed
humidity trends in dry regions contradict
e St climate models)

Consider the VP trend that woukd be precicied based on Pt using the

There are close links between
where the discrepancy occurs and
climatological aridity, both
spatialty and seasonally

0 Gfforence between
mwnhmcw w VP = VP") and assess whether
cbserved trends he +/-2 range of ofthe
CMIPS rograssion (gray shaded range i Fig 3). In the Southwost &
* does.

(see also: Douville and Piazzota 2017,
' S, GRL)

Ov-um-ndnw cbserved humidity trends are lower
(Fig 6).
Over Wic-50m--4rid 160rs, 1here A boan 10150 12 $pOCHC-
hurmicily on average (Fig 7¢), dospite reing erperatures (Fig
7ab). Relatve humidity remains tairly constant in the models
while £ has decreased substantially in cbservations (Fig 7d).

Models suggest humidity should have risen at rates close to
Clausius Clapeyron scaling over arid/semi-arid regions.
This rise has not happened in observations.

o

* B o 4 2017 OX 5911 0TS SAESONS 1

e mrmr We ACKROwnGge Anaing from NCAR which is & maje faciity sponsored by NSF under CoOparaive
- acrooment 1852977 and NOAA MAPP awards. NAmcmumm NAZ1OARAI10349,

. DOE awards DE: ad he Packad Foundation

(Schumacher et al. 2024, ESD)



werse.than we expected?

* Yes, possibly

* There are uncertainties in climate models, and these increase when we move
further away from known climate conditions

 Models behave very linearly and this is so far consistent with observations, but
what is the potential for tipping points?

» Literature (pcc ARs, Armstrong MacKay et al. 2022, Science) ShOws increasing risks of hitting
tipping points with increasing global warming, with higher risks above 1.5°C-2°C

5 s . T, Mediterranean
Every tonne of CO, emissions adds to global warming : 3

Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO; emissions (GtCO,)

&
(<)
1

T, relative to 1861-1880 (°C)
N
o
1

N
o o
PO IS SN S T T TR T S T S 1
)
%_‘
©
3 5
A_gg\
- >
oC)
f
2

Cumulative total CO,
emissions from 1870 (Gt C)

1,000 1,500 2,000 [~
| 1 | L

(IPCC AR6 WG1) Global mean temperature anomaly relative to 1861-1880 (°C) (Seneviratne et al. 2016, Nature)
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RESEARCH ARTICLE SUMMARY

CLIMATE CHANGE

Exceeding 1.5°C global warming could trigger

ey /a e h . a3 BARENTS j
multiple climate tipping points NORTHERN EXPANSION 48 Se'e. : SEAICE "% o
; § . PR TS . ABRUPT LOSS )
David I. Armstrong McKay*, Arie Staal, Jesse F. Abrams, Ricarda Winkelmann, Boris Sakschewski, 7 BOREAL LABRADOR SEA/ N -'. : BOREAL FOREST

Sina Loriani, Ingo Fetzer, Sarah E. Cornell, Johan Rockstrdm, Timothy M. Lenton*®

. PERMAFROST . SUBPOLAR GYRE ROUTHERNDIEBACK
ABRUPT THAW™ COLLAPSE . "

S
.= ATLANTIC MERIDIONAL
OVERTURNING CIRCULATION
COLLAPSE

* SAHEL/
s, WEST AFRICAN MONSOON

. © GREENING. 1 LOW-LATITUDE CORAL REEFS
AMAZON | DIE-OFF

RAINFOREST
DIEBACK

MOUNTAIN GLACIERS
LOISS
A

EAST ANTARCTIC
WEST ANTARCTIC _ - EASTANTARCTIC ;g1 ACIAL BASINS

ICE SHEET o~ i . ICE SHEETgeaac’ . COLLAPSE
COLLAPSE 8% y e COLLAPSE = - >

I , e —~ A
Maybe too optimistic estimate? —————
<2°C ®2-4C A=4C

(Armstrong McKay et al. 2022, Science)



Comparing anomalies in global observations of:
» CO, growth rate from atmospheric observations
« Terrestrial water storage from GRACE satellites

CGR (Gt Cyr)

&k ’
AL
v

g

4t o
1 lE

1980 1985 1990

1995

2
/, .
8 ) 0 Im
=
-2 9B
— GRACE (satellite) E
GRACE-REC (model) {4
- CO, groyvth rate (rleversed alxis)
2000 2005 2010 2015
Time

(Humphrey et al. 2018, Nature)
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e eee—CoUldClimaté*change turn=worse than we expected?

Observation-based data reveal a strengthening of correlation between yearly
anomalies of land water availability and CO, growth rate: Not captured in models

A . . Obs [ Coupled models [ Offline models
Increasingly negative tropical water-

interannual CO, growthrate coupling
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Terrestrial ecosystems have taken up about 32% of the total anthropogenic CO,
emissionsin the past six decades’. Large uncertainties in terrestrial carbon -climate

.

Qosnacosts feedbacks, however, make it difficult to medl(lh ow the land carbon sink will respond
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CGR under a changing climate. We find that the interannual relationship between
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(Liu et al. 2023, Nature; see also Humphrey et al. 2018, Nature)
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e ee—CoUldClimaté*change turn se.than we expected?

Total cumulative CO, emissions taken up by land and oceans (colours) and remaining in the atmosphere (grey)
under the five illustrative scenarios from 1850 to 2100
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Could the land carbon sink become even less
effective with increasing global warming? IPCC ARS, Figure SPM.7



« How about extremes? (generally not
included in integrated assessments
models deriving emissions scenarios);

could be too optimistic
(see poster of Felix Jaeger; fire biases in ESMs: see
Sanderson and Fisher, 2020)

Afforestation

Bioenergy with carbon
capture and storage




Some open questions
* Drought relevance for record-shattering heatwaves
« 2023 Record temperatures

Conclusions



s 20 2FPacificiNorthwest Heatwave:-Role of initial dry soils

What does it imply
for climate
projections of heat
extremes, in
particular record-
160°W  140°W  120°W  100°W  80°W shattering
heatwaves, if
5 drought trends are
underestimated in
ESMs?
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Soil moisture anomalies contributed up to 5°C to the heatwave!

(Schumacher et al. 2022, Earth’s Future)
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feedbacks may have played a role

(Seeber et al., in preparation)


https://data.giss.nasa.gov/gistemp/

Conclusions

» Confronting ESMs with observations requires consideration of several

dimensions:
* Observational uncertainty
* Internal climate variability in ESMs
* |solating sources of biases (e.g. thermodynamics vs dynamics, atmosphere vs
land vs ocean, forcing):
» Factorial experiments replacing some elements with observations or
assessing potential spread can help identify the root causes for biases

« Some biases in representation of droughts-climate feedbacks in ESMs:
 Implications for attribution and projections (also for heatwaves and global

carbon cycle, including potential tipping points)
« Need to better understand possible underlying causes (in particular land-

atmosphere interactions)
* Are the latest 2023-2024 observations consistent with ESMs?

Contact: sonia.seneviratne@ethz.ch



