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ClimaOcean.jl and Oceananigans.jl

Finite volume 
engine

Utilities for 
numerical experiments

• Grids

• Fields

• Operators

• OutputWriters

• Diagnostics

• Callbacks

• Coriolis, Equation of State, 
Parameterizations…

• Pressure / free surface solvers…
• Time stepping schemes

Domain-Specific numerics 
and physics

Package for 
ocean-sea-ice simulations 

• Bathymetry interpolation

• Surface flux computation

• Ocean-specific Diagnostics

Oceananigans.jl ClimaOcean.jl
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Possibility of high-resolution

Necessary for global calibration

+

(https://www.gfdl.noaa.gov/fv3/)

Computational 
efficiency

“A fast model can be a good model, but a good 
model must be a fast model! Computational 
efficiency is crucial….”

Rewriting a new ocean model

Simulate physics from meter- 
to global-scale
Support rapid prototyping of 
parameterizations
Easy to use for process 
studies

Flexibility and 
ease of use



Oceananigans: Easy to use and Accessible

User interface:

• Programmatic vs namelist

• Designed so code “reads 
like a paper” 

all written in

Faster than interpreted languages 
(Python, Matlab) 

Easy portability to virtually any 
architecture/systems

"...I have never experienced getting a useful calculation

done as easily as I was able to do with Oceananigans. 

It not only has a sophisticated interface, but it is remarkably 

fast...".

 Linux magazine

More flexible than compiled languages 
(C, Fortran)

Ramadhan et al, JOSS, 2020

Used in more that 20 scientific papers
10 from the MIT group

55+ contributors to the codebase

Try changing CPU() to GPU()

Initial conditions

Diagnostics



Dynamical core algorithmic implementation

fast compute
Make sure the computations take advantage 

of the parallel power of GPUs

scalable solvers
compute is fast, communication is expensive,

overlap communication with computation

memory leanness
minimise temporary array creations

loop over the domain as few times as possible

🚀



𝜕𝒖!
𝜕𝑡

= 𝐺𝒖 − 𝑔𝛻𝜂 +
𝜕
𝜕𝑧
𝜅#
𝜕𝒖!
𝜕𝑧

𝜕𝜃
𝜕𝑡

= 𝐺! +
𝜕
𝜕𝑧
𝜅"
𝜕𝜃
𝜕𝑧

𝜕𝑼$
𝜕𝑡

=. . .
𝜕𝜂
𝜕𝑡

=. . .

𝜕𝑤
𝜕𝑧

= −𝛻 ⋅ 𝒖!

𝜕𝑝
𝜕𝑧

= 𝑏

GPU execution model:
expose parallelization!

GPU Parallelization

3D kernel: each thread holds 
a computational cell

2D kernel: each thread holds 
a computational column

2D kernel: each thread holds 
a computational column

2D kernel: each thread holds 
a computational cell

3D computation of tendencies

Implicit vertical diffusion

W and P integral computation

2D barotropic solver𝜕𝑆
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tendency_T(i, j, k) = - div_uT(i, j, k) - div_vT(i, j, k) - div_wT(i, j, k)

@kernel function calculate_tendency_T!(rhs_Τ)
    i, j, k = @index(Global, NTuple)
    rhs_T[i, j, k] = tendency_T(i, j, k)
end

Oceananigans
GPU-friendly kernel fusion
no memory allocation

uT = compute_x_fluxes(u, T)
vT = compute_y_fluxes(v, T)
wT = compute_z_fluxes(w, T)
rhs_T = flux_divergence(uT, vT, wT)
 

temporary array

temporary array

temporary array

“classic” Fortran-style
temp arrays on CPU are 
cheap

advection of temperature

we launch as few kernels as possible:
only one for the tendency of each prognostic quantity

Memory Leanness

1/4° horizontal resolution
50 vertical levels

15 GB memory footprint

fits easily on 1 
Nvidia V100 GPU



Compute bound numerical schemes?

1. Memory load are costly
2. Computations are cheap

Once memory is loaded in registers flops 
(add, multiply especially) are not too 
costly.

Optimize for register pressure 
and memory loads

Maximize Flops per retrieved byte



WENO reconstruction schemes

WENO schemes Centered schemes

What is the downside:
• low control on the dissipation
• diapycnal diffusivity?
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Why they are appealing: 
• avoid explicit diffusion
• preserve gradients
• minimal diffusion with minimal noise?

Non-linear numerical reconstruction
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Important for mesoscale resolving simulations?



Upper ocean mixing: WENO vs SGS 

Coarse grid:     2 meters
Fine grid:       0.5 meters

Instantaneous temperature 
in the 0.5 meter resolution 
case

Wind
Heat

Horizontally averaged Temperature Horizontally averaged Salinity

Coarse grid: SGS

Coarse grid: WENO9

Fine grid: SGS

Fine grid: WENO9



WENO reconstruction schemes

Centered numerics 1/12th

High-order WENO 1/12th

AVISO

1/6th WENO
1/12th Centered

1/12th WENO



Multi-GPU parallel implementation

Hide GPU-GPU communication!
Easy for 3D baroclinic variables

Take advantage of memory 
leanness for the 2D barotropic 
solver

Size of barotropic kernel

Interior cells halo cellshalo cells



Scaling performance (dynamical core)

1/4th degree: > 25 SYPD on 4 GPUs

1/12th degree: 10 SYPD on 64 GPUs

1/48th degree: > 1 SYPD on 512 GPUs

Possible bottlenecks to optimize in ClimaOcean

• Asynchronous I / O :  passing memory between GPU and CPU is heavy!

• Surface fluxes computation

• Sea ice?



1/48° horizontal resolution + 100 
vertical levels ~ 2x1010 points

Run on 32 Nvidia A100 GPUs

Submesoscale permitting ocean simulations?



Near-global ocean simulation  at 1/12o with 
100 vertical levels on 2 GPU nodes (~ 1.5 SYPD) - 8 GPUs

Mesoscale resolving ocean simulations

Testbed for performance
 and stability

• Surface Forcing:

• Prescribed fluxes

• Restoring (T, S)

• 20 years run

• Semi-idealized



Kinetic energy in the model

• Captures well mesoscale turbulence in turbulent regions

• Bias in large scale pattern of EKE



Diapycnal mixing in re-entrant channel

Hill et al. 2012, Ocean Modelling
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Dissipation due to diffusive flux 

Dissipation due to advective flux 

Allows calculating pointwise dissipation 
caused by implicit numerical schemes.

Configuration:
• Restoring at the north
• Differential heating and cooling
• Parabolic zonal wind stress
• No background diffusivity



Diapycnal mixing in re-entrant channel

Case 1 Case 2 Case 3

Case 1 Case 2 Case 3

• Momentum:

• 2nd Order

• Tracer: 

• Linear 3rd Order

• Momentum: 

• 2nd Order

• Horizontal Tracer: 

• WENO 9th order

• Momentum: 

• WENO (vector invariant)

• Horizontal Tracer: 

• WENO 9th order



Moving forward?



Summary

• CliMA is writing a new ocean model called ClimaOcean

•We are leveraging modern programming languages and architectures

• Targeting high-resolution eddying configuration

Thank you!



Evolution over 20 years

• Drift in density structure comparable to other 
z-coordinate models

• Reasonable transport



Diapycnal mixing in re-entrant channel
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Conclusion

• We need high-order schemes in the 
horizontal

• Vertical advection plays little role in 
diapycnal mixing

• Improving the momentum scheme 
affects spurious mixing very little

Points of concern

• Top boundary?

• Bottom region


