
Ocean simulations with
ClimaOcean.jl

Simone Silvestri and the Clima Ocean team
COMMODORE, Boulder, September 12th, 2024

ClimaOcean.jl and Oceananigans.jl

Finite volume
engine

Utilities for
numerical experiments

• Grids

• Fields

• Operators

• OutputWriters

• Diagnostics

• Callbacks

• Coriolis, Equation of State,
Parameterizations…

• Pressure / free surface solvers…
• Time stepping schemes

Domain-Specific numerics
and physics

Package for
ocean-sea-ice simulations

• Bathymetry interpolation

• Surface flux computation

• Ocean-specific Diagnostics

Oceananigans.jl ClimaOcean.jl

Navid Constantinou Greg WagnerSid Bishnu Raffaele Ferrari

Ali Ramadhan Jago Strong-Wright Tomas Chor Francis Poulin

ClimaOcean / Oceananigans developers and advisors

Simone Silvestri

Chris Hill

Jean-Michel Campin

John Marshall

Xin Kai Lee

Andre Souza

Possibility of high-resolution

Necessary for global calibration

+

(https://www.gfdl.noaa.gov/fv3/)

Computational
efficiency

“A fast model can be a good model, but a good
model must be a fast model! Computational
efficiency is crucial….”

Rewriting a new ocean model

Simulate physics from meter-
to global-scale
Support rapid prototyping of
parameterizations
Easy to use for process
studies

Flexibility and
ease of use

Oceananigans: Easy to use and Accessible

User interface:

• Programmatic vs namelist

• Designed so code “reads
like a paper”

all written in

Faster than interpreted languages
(Python, Matlab)

Easy portability to virtually any
architecture/systems

"...I have never experienced getting a useful calculation

done as easily as I was able to do with Oceananigans.

It not only has a sophisticated interface, but it is remarkably

fast...".

 Linux magazine

More flexible than compiled languages
(C, Fortran)

Ramadhan et al, JOSS, 2020

Used in more that 20 scientific papers
10 from the MIT group

55+ contributors to the codebase

Try changing CPU() to GPU()

Initial conditions

Diagnostics

Dynamical core algorithmic implementation

fast compute
Make sure the computations take advantage

of the parallel power of GPUs

scalable solvers
compute is fast, communication is expensive,

overlap communication with computation

memory leanness
minimise temporary array creations

loop over the domain as few times as possible

🚀

𝜕𝒖!
𝜕𝑡

= 𝐺𝒖 − 𝑔𝛻𝜂 +
𝜕
𝜕𝑧
𝜅#
𝜕𝒖!
𝜕𝑧

𝜕𝜃
𝜕𝑡

= 𝐺! +
𝜕
𝜕𝑧
𝜅"
𝜕𝜃
𝜕𝑧

𝜕𝑼$
𝜕𝑡

=. . .
𝜕𝜂
𝜕𝑡

=. . .

𝜕𝑤
𝜕𝑧

= −𝛻 ⋅ 𝒖!

𝜕𝑝
𝜕𝑧

= 𝑏

GPU execution model:
expose parallelization!

GPU Parallelization

3D kernel: each thread holds
a computational cell

2D kernel: each thread holds
a computational column

2D kernel: each thread holds
a computational column

2D kernel: each thread holds
a computational cell

3D computation of tendencies

Implicit vertical diffusion

W and P integral computation

2D barotropic solver𝜕𝑆
𝜕𝑡

= 𝐺# +
𝜕
𝜕𝑧
𝜅"
𝜕𝑆
𝜕𝑧

𝜕!𝑇 = −
𝜕𝑢𝑇
𝜕𝑥

−
𝜕𝑣𝑇
𝜕𝑦

−
𝜕𝑤𝑇
𝜕𝑧

+. . .

tendency_T(i, j, k) = - div_uT(i, j, k) - div_vT(i, j, k) - div_wT(i, j, k)

@kernel function calculate_tendency_T!(rhs_Τ)
 i, j, k = @index(Global, NTuple)
 rhs_T[i, j, k] = tendency_T(i, j, k)
end

Oceananigans
GPU-friendly kernel fusion
no memory allocation

uT = compute_x_fluxes(u, T)
vT = compute_y_fluxes(v, T)
wT = compute_z_fluxes(w, T)
rhs_T = flux_divergence(uT, vT, wT)

temporary array

temporary array

temporary array

“classic” Fortran-style
temp arrays on CPU are
cheap

advection of temperature

we launch as few kernels as possible:
only one for the tendency of each prognostic quantity

Memory Leanness

1/4° horizontal resolution
50 vertical levels

15 GB memory footprint

fits easily on 1
Nvidia V100 GPU

Compute bound numerical schemes?

1. Memory load are costly
2. Computations are cheap

Once memory is loaded in registers flops
(add, multiply especially) are not too
costly.

Optimize for register pressure
and memory loads

Maximize Flops per retrieved byte

WENO reconstruction schemes

WENO schemes Centered schemes

What is the downside:
• low control on the dissipation
• diapycnal diffusivity?

G
rid

 s
ca

le
 v

or
tic

ity
Vo

rt
ic

ity

Why they are appealing:
• avoid explicit diffusion
• preserve gradients
• minimal diffusion with minimal noise?

Non-linear numerical reconstruction

𝑐
˜
&'(/* = ∑

+
𝜔+𝑐

˜
&'(/*
+

𝑐
˜
&'(/*
+ = linear	reconstruction	within	stencil	S...

𝜔+ = 𝑓(𝑐&,-. . . 𝑐&'-)

Important for mesoscale resolving simulations?

Upper ocean mixing: WENO vs SGS

Coarse grid: 2 meters
Fine grid: 0.5 meters

Instantaneous temperature
in the 0.5 meter resolution
case

Wind
Heat

Horizontally averaged Temperature Horizontally averaged Salinity

Coarse grid: SGS

Coarse grid: WENO9

Fine grid: SGS

Fine grid: WENO9

WENO reconstruction schemes

Centered numerics 1/12th

High-order WENO 1/12th

AVISO

1/6th WENO
1/12th Centered

1/12th WENO

Multi-GPU parallel implementation

Hide GPU-GPU communication!
Easy for 3D baroclinic variables

Take advantage of memory
leanness for the 2D barotropic
solver

Size of barotropic kernel

Interior cells halo cellshalo cells

Scaling performance (dynamical core)

1/4th degree: > 25 SYPD on 4 GPUs

1/12th degree: 10 SYPD on 64 GPUs

1/48th degree: > 1 SYPD on 512 GPUs

Possible bottlenecks to optimize in ClimaOcean

• Asynchronous I / O : passing memory between GPU and CPU is heavy!

• Surface fluxes computation

• Sea ice?

1/48° horizontal resolution + 100
vertical levels ~ 2x1010 points

Run on 32 Nvidia A100 GPUs

Submesoscale permitting ocean simulations?

Near-global ocean simulation at 1/12o with
100 vertical levels on 2 GPU nodes (~ 1.5 SYPD) - 8 GPUs

Mesoscale resolving ocean simulations

Testbed for performance
 and stability

• Surface Forcing:

• Prescribed fluxes

• Restoring (T, S)

• 20 years run

• Semi-idealized

Kinetic energy in the model

• Captures well mesoscale turbulence in turbulent regions

• Bias in large scale pattern of EKE

Diapycnal mixing in re-entrant channel

Hill et al. 2012, Ocean Modelling

𝑃./ = 𝒜.𝛿. 𝑇/'(− 𝑇/ − 𝑈𝛿. 𝑇/'(𝑇/

𝑃./ = 𝒟.𝛿. 𝑇/'(− 𝑇/
Dissipation due to diffusive flux

Dissipation due to advective flux

Allows calculating pointwise dissipation
caused by implicit numerical schemes.

Configuration:
• Restoring at the north
• Differential heating and cooling
• Parabolic zonal wind stress
• No background diffusivity

Diapycnal mixing in re-entrant channel

Case 1 Case 2 Case 3

Case 1 Case 2 Case 3

• Momentum:

• 2nd Order

• Tracer:

• Linear 3rd Order

• Momentum:

• 2nd Order

• Horizontal Tracer:

• WENO 9th order

• Momentum:

• WENO (vector invariant)

• Horizontal Tracer:

• WENO 9th order

Moving forward?

Summary

• CliMA is writing a new ocean model called ClimaOcean

•We are leveraging modern programming languages and architectures

• Targeting high-resolution eddying configuration

Thank you!

Evolution over 20 years

• Drift in density structure comparable to other
z-coordinate models

• Reasonable transport

Diapycnal mixing in re-entrant channel

𝜅0 = −
⟨𝑃0⟩

2⟨𝜕0𝑇*⟩
𝑑 = 𝑥, 𝑦, 𝑧

𝜅& = −
⟨𝑃.⟩ + ⟨𝑃1⟩ + ⟨𝑃2⟩

2⟨𝜕2𝑇*⟩

Conclusion

• We need high-order schemes in the
horizontal

• Vertical advection plays little role in
diapycnal mixing

• Improving the momentum scheme
affects spurious mixing very little

Points of concern

• Top boundary?

• Bottom region

