







# GANOF EFECTENCY FROM NEMO 4 TO NEMO 5

Sibylle TECHENE, Gurvan MADEC, Nicolas DUCOUSSO, Florian LEMARIE, Jérôme CHANUT, Andrew COWARD, Dave STORKEY, Mike BELL, Daley CALVERT, Clément ROUSSET, Christian ETHE, Sébastien MASSON

Commodore - 09/10/2024 | NCAR











- Part 1: Optimizing the kernel accelerates NEMO run time by 20%
- Part 2: Introducing RK3 timestepping scheme considerably accelerates NEMO
- Part 3: Changing version of I/O server of NEMO adds an extra 30%
- Part 4: Science Results



### Part 1: Kernel refactoring

- ► NEMO: basics reminder
- Limit MPI communications
- Reduce memory footprint
- Performance study
- Part 2: LF to RK3 speed up
- ► Part 3: I/O optimization
- Part 4: Science results



# **NEMO: BASICS REMINDER**

- ► FORTRAN 90 parallel code
  - optimized for vector machines
  - generalized vertical coordinate
  - split/explicit free surface
  - grid refinement, ice, bio
- Domain decomposition
  - Require MPI communication to exchange data
  - Overlapping sub-domains : halo





Domain is decomposed into overlapping sub-domains distributed on computing units



# LIMIT MPI COMMUNICATIONS



### Too many small communications

### move from 1 to 2 halo size



### + gather communications

- Limit synchronization barrier
  - non blocking communications

# Reduce communication cost for all components

# **REDUCE MEMORY FOOTPRINT**



NEMO is memory bound

◆ Reduce global memory footprint
 ✓ Quasi-eulerian z-coordinate
 e<sub>3</sub>(k) = e<sub>3</sub><sup>0</sup>(k) × (1 + <sup>η</sup>/<sub>h<sup>0</sup></sub> \* δ<sub>k</sub>)

- Reduce local memory footprint
  - ✓ 3D loop with 2D slices
  - Right array size

# Reduce memory footprint cost for all components

| PERFORMANCES: NEMO 4 VS          | 5    |     |
|----------------------------------|------|-----|
| $eORCA1^{\circ} OCE + ICE + I/O$ |      | 2   |
| 1 year simulation daily In/Out   |      |     |
| Domain size : 360x331            |      | 1,8 |
| ► 75 vertical levels             |      | 1.6 |
| Run time dominated by comm       | Gain |     |
| Time-to-solution (10 x 10)       |      | 1,4 |
| NEMO v4: 142 SYPD                |      | 1.0 |
| NEMO v5: 174 SYPD                |      | 1,2 |
|                                  |      |     |





# **KERNEL REFACTORING**

### Refactoring the kernel accelerates NEMO run time by 20% at least

Part 1: Kernel refactoring

### Part 2: LF to RK3 speed up

- Theoretical stability constraints or RK3 strength
- ► RK3 weakness
- ► RK3 in NEMO
- Performances
- Part 3: I/O optimization
- Part 4: Science results



# THEORETICAL STABILITY CONSTRAINTS

### 3D advection is a hurdle\* \*\*





### ...that can be overtaken\*

### F. Lemarié et al. / Ocean Modelling 92 (2015) 124–148

| Time-scheme for advection |                          | n <sub>rhs</sub> | Stability constrain   |                        |                            |
|---------------------------|--------------------------|------------------|-----------------------|------------------------|----------------------------|
|                           |                          |                  | α* <sub>c2</sub>      | $\alpha^{\star}_{up3}$ | $\alpha^{\star}_{\rm Co4}$ |
| LFRA ( $\nu = 0.1$ )      | order 1                  | 1 (              | 0.904                 | 0.472                  | 0.522                      |
| RK3                       | order 2,3                | 3                | 1.73                  | 1.626                  | 1                          |
|                           |                          |                  |                       |                        |                            |
|                           |                          |                  |                       |                        |                            |
|                           |                          |                  |                       |                        |                            |
|                           | $\Delta t_{\rm DV2}$     | 523              | $\times \Delta t_{1}$ |                        |                            |
| 4                         | $\Delta t_{RK3} \approx$ | = 2 :            | $\times \Delta t_l$   | LF                     |                            |

\*Lemarié et al., 2015: Stability constraints for oceanic numerical models: implications for the formulation of time and space discretizations.

\*\*Schepetkin, 2015: An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. 10



\*Wicker, L. J., & Skamarock, W. C. (2002). Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev., 130(8), 2088–2097.



# **RK3 IN NEMO**

### Active tracers



$$\mathcal{F}_{1}(\mathbf{T}^{n}) = Adv * + Ldf + Zdf + Fn$$

$$\mathcal{F}_{1}(\mathbf{T}^{n}) = Adv * + Ldf + Zdf + Fn$$

$$\mathcal{F}_{2}(\mathbf{T}^{n+1/2}) = \mathcal{F}_{2}(\mathbf{T}^{n+1/3}) = Adv * + Ldf + Zdf + Zdf + Idf$$

$$\mathcal{F}_{3}(\mathbf{T}^{n+1/2}) = \mathcal{F}_{3}(\mathbf{U}^{n+1/2}) = Adv + Ldf + Zdf + Idf$$





# **RK3 IN NEMO**

### Momentum



\*Ducousso et al., 2024: Stability and accuracy of Runge–Kutta-based split-explicit time-stepping algorithms for free-surface ocean models, submitted to JAMES.

### Single first strategy : Ducousso et al., 2024\*

$$\begin{split} \mathcal{J}^{n+1/3} &= \mathbf{U}^n + \frac{\Delta t}{3} \mathscr{F}_1 \left( \mathbf{U}^n \right) & \qquad \mathcal{F}_1 \left( \mathbf{U}^n \right) = Adv + Cor + Hpg \\ &+ Ldf + Zdf + Hpg \\ &+ Ldf + Ldf + Ldf + Ldf \\ &+ Ldf + Ldf + Ldf + Ldf \\ &+ Ldf + Ldf + Ldf + Ldf \\ &+ Ldf \\ &+ Ldf + Ldf \\ &+ Ldf \\$$









## **RK3 IN NEMO**





| <b>PERFORMANCES:</b> | LF | VS. | RK3 |
|----------------------|----|-----|-----|
|----------------------|----|-----|-----|

### $eORCA1^{\circ}OCE + ICE + I/O$

- ► 1 year simulation daily I/O
- ► Domain size: 360x331
- ► 75 vertical levels
- Time-to-solution to achieve a given accuracy (10 x 10)
  - Leap Frog v5: 119 SYPD
  - ► RK3 v5: 187 SYPD

Gain



Number of CPU cores /sub-domains (optimal partition)

- Part 1: Kernel refactoring
- Part 2: LF to RK3 speed up
  - Theoretical stability constraints or RK3 strength
  - ► RK3 weakness
  - ► RK3 in NEMO
  - Performances
- Part 3: I/O optimization
- Part 4: Science results



# ICING ON THE CAKE XIOS: V2 -> V3





IO server running on dedicated cpu cores

Developed at IPSL

- Part 1: Kernel refactoring
- Part 2: LF to RK3 speed up
  - Theoretical stability constraints or RK3 strength
  - ► RK3 weakness
  - ► RK3 in NEMO
  - Performances
- Part 3: I/O optimization
- Part 4: Science results



# WHAT IS THE PHYSICAL RESPONSE OF THE OCEAN WITH RK3?

### $eORCA1^{\circ}OCE + ICE + I/O$



- ► on going validation
- ► 100 years
- ► forced climate

# CONCLUSION: V4 -> V5 MORE THAN 2X FASTER

- ◆ Optimization +20%
  ✓ Refactoring
  ◆ RK3 +40%
  ✓ See Madec et.al 2024\*
- ♦ I/Os +30%

\* Madec G., Lemarié F., Chanut J., Téchené S. et al., 2024. Implementation of a Runge-Kuttabased time-stepping algorithm in the NEMO ocean model : formulation, robustness and efficiency, in preparation for JAMES

### Perpective

Will these conclusions
 translate to the GPU case?



# **THANKS FOR YOUR ATTENTION !**

