Gregory Wagner (MIT) and the Clima-Ocean team

Opportunities and *pitfalls* in automated calibration

More accurate models

- Incorporate comprehensive, creative error estimation
- Faster, more innovative parameterization development

Overfitting and compensating error

Ocean Model Development Workshop

Automated calibration of parameterizations

Finding parameters by minimizing error with a computational method

- Methods: stochastic gradient descent, Ensemble Kalman Inversion
- Repeatable and reproducible
- "Error" can be formulated flexibly
- Can include uncertainty quantification as an additional step

19.96 19.97 19.98 19.99 19.99 19.99

Automated calibration of mixing parameterizations

- High-fidelity LES = "truth"
- Parameterization embedded in a "single column model"

$$
\partial_t \overline{T} = - \partial_z \overline{w'T'}(\mathbb{C})
$$

• Error = difference between horizontally-averaged LES and model T, U, V

CATKE: a one-equation parameterization

Based on Convective Adjustment and Turbulent Kinetic Energy

$$
\ell_c = \ell_c^{\text{conv}} + \sigma_c(Ri) min\left(d, \mathbb{C}^b \frac{\sqrt{e}}{N}\right)
$$

 $\partial_t e$ $= \partial_z(\kappa_e \partial_z e) + \kappa_u |\partial_z \overline{u}|^2 - \kappa_c \partial_z \overline{b}$ $-\frac{e^{2/2}}{2}$ ℓ_{D} Single-column TKE equation

 l_{c}^{conv} ~ $e^{3/2}$ $\int b^{-1} t M^{2} > 0$ Convective mixing length

Single-column temperature equation

 $\frac{\partial}{\partial t} \overline{T}$ = $\ell_c \sqrt{e}$ $= \partial_z (\kappa_c \partial_z T)$

Eddy diffusivity

 κ_c
= $\ell_c \sqrt{e}$

Mixing length

Calibration with Ensemble Kalman Inversion

- Iteratively improve an ensemble of models
-
- 4m, and 2m vertical resolution

Realizing opportunity 1: more accurate models

Large eddy simulation --SMC-LT (Harcourt 2015) --KPP (Large et al. 1994) $-$ **CATKE**

Wind stress only (weak forcing)

Realizing opportunity 2: flexible error design

■ Large eddy simulation $-\Delta z$ = 1 meters -- Δz = 4 meters $-\Delta z$ = 8 meters -- Δz = 16 meters

Realizing opportunity 3: accelerating model development

Minimalist Variable Pr but no convective adjustment "Favorite"

Strong wind no cooling

Evaluating three formulations of CATKE of increasing complexity

Strong wind no cooling

Pitfall: compensating error

Do we get the right answer for the wrong reasons?

Large eddy simulation $-CATE$ $-$ k- ϵ (Umlauf and Buchard 2003)

48 hour simulation (weak forcing)

Solution

Reinterpret CATKE's "TKE" as a latent variable

Pitfalls in calibrating against observations (1)

Re-calibrating CATKE together with surface flux parameterization

Need data on both mixed layer depth and SST

CATKE's turbulent kinetic energy

Surface heat flux

0.0010

 -0.0000

500

heat flux (W m⁻²

Surface

-500

 -1000

energy (m²

Pitfalls in calibrating against observations (2)

Re-calibrating CATKE without submesoscale restratification

Solution

 \sim 2 km resolution

Use uncertainty quantification to constrain CATKE parameters a priori

Fox-Kemper et al 2011 but see also Sinha and Callies 2023

Summary (opportunities and pitfalls of automated calibration)

- **Opportunities when using automated calibration:**
	- More accurate models
	- Faster parameterization development
	- Flexible error design
- **Pitfall: compensating error**
- **But we have solutions:**
	- *A priori* constraints via automated calibration + uncertainty quantification
	- Careful definition of observable vs latent variables
	- Use more data

 \mathbb{C}_1

