A COMPARISON OF HYCOM AND MOM6 VERTICAL COORDINATES

Alan Wallcraft

Center for Ocean-Atmospheric Prediction Studies (COAPS) Florida State University

CLIVAR Ocean Model Development Panel and COMMODORE Workshop

12 September 2024

BASIC ALE APPROACH

- For each time step:
- Solve the layered continuity equation
 - Move all the layers
- Apply Arbitrary Lagrangian Eulerian (ALE) method in the vertical
 - Regrid: select the "desired" layer structure
 - Power of ALE method is in the choice of new layer locations
 - Geopotential and terrain-following coordinates can easily be "emulated" by holding the interfaces fixed in time
 - HYCOM HYBGEN and MOM6 HYCOM1:
 - · Favor isopycnals that outcrop into fixed depth layers
 - Remap: from the source to the regrid layers
 - Interfaces can move, but the fluid does not move
 - Choose interpolation that is conservative, with no new extrema
 - Typically Piecewise Parabolic Method (PPM), Colella and Woodward (1984), with layer edge values from a cubic polynominal
 - Nominally, this does not change the solution but it does add diffusion

HYCOM ALE: HYBGEN (ALSO NOW AVAILABLE IN MOM6)

- Regridding uses entrainment
 - Source and target is layer average sigma2 potential density
 - Maintain isopycnal layers
 - If layer is too heavy, entrain from lighter layer above
 - If layer is too light, entrain from heavier layer below
 - \circ If an interface needs to move both up and down, we pick one
 - Can lead to thick-thin-thick layer structure, which reduces the effective vertical resolution
- Use PCM for near-isopycnal layers (e.g. within $0.01kg/m^3$ of target) for both regridding and remapping
 - Greatly simplifies entrainment/detrainment regridding
 - Detrainment (thinning) does not change layer density
 - \circ PCM is 1st order accurate and very diffusive
 - Regridding does not effect most (isopycnal) layers
 - \cdot No regridding, no loss of accuracy and no diffusion
- For fixed and non-isopycnal layers, vertical remapping typically uses PPM with WENO-like cubic polynomial edge calculations
- Produces noisy interfaces, that require an interface smoother

- Regridding walks a monotonic vertical profile
 - Source is layer sigma2 potential density, with 1% (say) compressibility
 - Source usually increases with depth, and is forced to be stable
 Density(K+1) = MAX(Density(K), Density(K+1))
 - From these layer densities and the layer thicknesses, construct a vertical profile using piecewise polynomials
 - Regridding and remapping may use different profiles
 - · P1M_H2, linear between H2 interfaces, was the only practical scheme
 - PPM_CW, adds a monotonic profile constraint to _H4 edges, Colella and Woodward (1984), and is now the recommended option
 - Target is interface sigma2 potential density plus compressibility factor
 - \circ The new interface depths are at the location of targets on the profile
 - Unique mapping from a monotonic profile to the target isopycnals
- Vertical remapping typically used PPM_H4 for all layers, where H4 indicates a cubic polynomial calculation of interface (edge) values
 - PPM_CW is slightly more diffusive but can be used for regrid and remap
- Produces smooth interfaces, no need for an additional interface smoother

PACIFIC VERTICAL CROSS SECTION AT 180°E 0-1000m

- MOM6 and HYCOM twin 41-layer simulations on $1/12^{\circ}$ global tripole grid
 - o 10 years with CFSR 2003 repeated atmospheric forcing
- Isopycnals "outcrop" into fixed depth layers
- HYCOM shows some indication of thick-thin-thick layers (3 year mean)

HYCOM HYBGEN

MOM6 HYCOM1

HYBGEN vs HYCOM1

- HYBGEN assumes the source layer structure is close to the desired result, HYCOM1 makes no such assumption: it is a general vertical interpolator
- MOM6 requires a vertical interpolator: HYBGEN can't fill this role
 - For initialization, INTERPOLATE_SPONGE_TIME_SPACE and ODA_INCUPD
- HYBGEN often produces a thick-thin-thick layer structure, and HYCOM1 does not
- HYBGEN maintains isopycnal layers exactly but HYCOM1 does not
 - If a layer changes thickness adiabatically:
 - Its layer average potential density (HYBGEN) is unchanged
 - Its interface potential density (HYCOM1) is not, because this depends on nearby layer thicknesses and densities and the compressibility factor (since depth has changed)
 - The associated interfaces are moved by the HYCOM1 regridder and preserved by the HYBGEN regridder
- In general, HYBGEN moves interfaces significantly less than HYCOM1, so HYBGEN causes less diapycnal diffusion than HYCOM1

ATLANTIC OVERTURNING STREAMFUNCTION, OVER YEARS 8-10 (I)

- 0.08 degree Global with 41 layers, CFSR 2003 repeated forcing
- 25S to 65N and 0 to 6500m depth, 2.5 Sv contour interval GLOBAL HYCOM (HYBGEN) GLOBAL MOM6 (ORIGINAL HYCOM1)

HYCOM at 26°N: max 11.6Sv at 1000m; 0Sv at 3500m MOM6 at 26°N: max 14.0Sv at 0900m; 0Sv at 2730m RAPID array at 26°N: max 17.0Sv at 1000m; 0Sv at 4300m

An isopycnal favoring model should have deeper overturning that HYCOM1

ATLANTIC OVERTURNING STREAMFUNCTION, OVER YEARS 8-10 (II)

• MOM6 0.08 degree Atlantic-only with 41 layers, CFSR 2003 repeated forcing

LATEST HYCOM1

• 25S to 65N and 0 to 6500m depth, 2.5 Sv contour interval

ORIGINAL HYCOM1

ORIGINAL HYCOM1 at 26°N: max 16.5Sv at 0900m; 0Sv at 2950m LATEST HYCOM1 at 26°N: max 18.0Sv at 1100m; 0Sv at 4000m RAPID array at 26°N: max 17.0Sv at 1000m; 0Sv at 4300m

GLOBAL cases do not show as large an improvement

LATEST 0.08 ATLANTIC 75-LAYER MOM6 SETUP

- 19.2: Same 75-layer vertical grid as OM4_25, EQN_OF_STATE= WRIGHT_REDUCED, BOUSSINESQ=False, SEMI_BOUSSINESQ=False, MASS_WEIGHT_IN_PGF_NONBOUS_BUG=False, USE_CONT_THICKNESS=True. **REGRID/REMAP=PPM_CW, HYCOM1_ONLY_IMPROVES=True REGRID_FILTER_SHALLOW_DEPTH=100,** REGRID_FILTER_DEEP_DEPTH=125. REGRID_TIME_SCALE=6hrs. INTERFACE_FILTER_ORDER=4, INTERFACE_FILTER_TIME=3hrs, CORRECT_BBL_BOUNDS=True, BBL_EFFIC=.01, (use 0.0 for Global cases) SIMPLE_TKE_TO_KD=False, USE_MEKE=False, CORIOLIS_SCHEME="SADOURNY75_ENERGY". KD=.1E-4, KV=.3E-4, HENYEY_IGW_BACKGROUND=False, KH_VEL_SCALE=.00286, AH_VEL_SCALE=.02, no SMAGORINSKY, BACKSCATTER_UNDERBOUND=False. LOTW_BBL_ANSWER_DATE=20240731, DEFAULT_ANSWER_DATE=20240731, FRICTWORK_BUG=False, VISC_REM_BUG=False, **USE HUYNH STENCIL BUG=False**
- BOUSSINESQ=True gives similar results

MOM6 ALE: HYCOM1 REGRIDDING

- Original approach: P1M_H2 for regrid and PPM_H4 for remap
- Why not use the remap piecewise polynomial for regrid?
 - **PPM_H4** eventually produces unstable layers
- The new interface depths are at the location of targets on the profile
 - Cyan curves on upcoming plots
- However, the actual new interface densities are:
 - Remap (e.g. PPM_H4) T & S to new layers, and then reapply _H2 (linear) or _H4 (cubic) to the new layer densities and thicknesses
 - The latter step is not performed in the running model
- The new interface densities can be approximated by holding the density profile fixed except for a single interface and applying the remapping and edge recalculation steps to get the new density at that interface
 - \circ Allows us to visualize the effect of moving the interfaces
 - Orange curves on upcoming plots
 - The actual inferface densities may be different because more than one interface could move and T & S are remapped

Potential Density at 95W25N, REGRID=P1MH2 REMAP=PPMH4

Potential Density at 95W25N, REGRID=REMAP=PPMH4

Potential Density at 95W25N, REGRID=REMAP=PPMCW

SINGLE TIMESTEP CHANGE IN LAYER 34 THICKNESS FROM REGRID

- 0.08 degree 41-layer GoM, started from GOFS 3.1 Jan 1st 1994
- Run for two months and then extend for 3 days sampling every time step
- MOM6 HYCOM1 INTERPOLATION=P1M_H2, REMAPPING=PPM_H4

Regrid jitter leads to excessive diapycnal diffusion

SINGLE TIMESTEP CHANGE IN INTERFACE 34 DENSITY FIT FROM REGRID

- Actual interface density after HYCOM1 can be different from target, add HYCOM1_ONLY_IMPROVES to skip moves that cause a worse fit
- P1M_H2 + PPM_H4. Positive (red) values for worse fit. At 23:20.

Significantly reduces jitter and diapycnal diffusion

MOM6 GULF OF MEXICO SSH VARIABILITY (CM), OVER YEARS 1994-1998

- 0.08 degree 41-layer GoM, started from GOFS 3.1 Jan 1st 1994
- Absolute winds; no HYCOM1 compressibility factor
- Run for four years with HYCOM1_ONLY_IMPROVES=True

P1M_H2

PPM_CW

- Eddies still shut down in Atlantic and Global cases with absolute winds
- Loop current eddies are small and quickly dissipate with relative winds

GULF STREAM LAYER 22 REGRID THICKNESS CHANGE (M/DAY) SNAPSHOT

- 0.08 degree Atlantic MOM6 with 41 layers, CFSR 2003 repeated forcing
- After 10 years of HYCOM1 P1M_H2: run for 31 days with new ALE options
- Change from REGRID only, 50 m/day is 17 cm/timestep

MOM6 HYBGEN

PPM_CW, ONLY_IMPROVES

GULF STREAM 31N & 33N REGRID THICKNESS CHANGE (M/DAY) SNAPSHOT

- 0.08 degree Atlantic MOM6 with 41 layers, CFSR 2003 repeated forcing
- After 10 years of HYCOM1 P1M_H2: run for 31 days with new ALE options

31N & 33N MOM6 HYBGEN

PPM_CW, ONLY_IMPROVES

MAX_LAYER_THICKNESS (DX0K)

- Target density of deep layers often denser than bottom density, leading to zero thickness layers at the bottom
 - All layers are always computed, even when zero thickness
- MOM6 MAX_LAYER_THICKNESS sets a maximum thickness for each layer
 - Splits thick isopycnal layers into several layers
 - Leads to more deep inflated layers
 - Disfavors isopycnals
 - Once one layer is split, all deeper layers will be away from their target densities and so will also be split
- HYCOM (HYBGEN) has DP0K(K) as the minimum layer K thickness
 - Builds the fixed depth layers near the surface
- Added MAX_LAYER_THICKNESS to HYCOM as DX0K
- 41-layer global HYCOM setup (e.g. GOFS 3.1), has DP0K from 1 m at the surface to 600 m at depth
 - \circ In Southern Ocean, layer 39 is the deepest inflated layer
 - With DX0K(1:41) = 750m, it is active somewhere on the globe in layers 24 to 41 and all 41 layer's inflate in the Southern Ocean

THERMOBARIC INSTABILITY IN HYCOM, NOT POSSIBLE IN MOM6

- HYCOM uses sigma2 potential density, with a thermobaricity correction
 - Can be unstable (Hallberg, 2005), or cause noisy interfaces
- MOM6 uses in-situ density, integrating the finite volume pressure gradient force using numerical quadrature (Adcroft et al, 2008)
- N. Pacific: difference in SSH (cm) over 12 hours, after 10 model years

GLBb0.08 HYCOM HYBGEN

GLBb0.08 MOM6 HYCOM1

DX0K=750M WITH NO THERMOBARIC INSTABILITY - VERTICAL SECTIONS

- Start from a 41-layer no tides HYCOM GLBb0.08 case with TBI
- Extend for 1 month with DX0K=750m
- Salinity sections at 170W and 45N; layers 36:37 become 36:40
- Adding more deep isopycnal layers gives a similar improvement

Jan 1 00Z no DX0K

Feb 1 00Z DX0K=750m

SUMMARY

- HYCOM1 with PPM_CW and HYCOM1_ONLY_IMPROVES still has more diapycnal diffusion than an isopycnal-favoring method should
 - Further improvements are possible, e.g. alternatives to the compressibility factor
- HYBGEN has minimal diapycnal diffusion, but has other issues
 - Thick-thin-thick layer structure reduces effective vertical resolution
 - Requires additional interface smoothing
- Algorithms and source code migrating between HYCOM and MOM6
 - HYBGEN is available in MOM6
 - Can't be used as the needed vertical interpolator
 - Not yet ready for production runs
 - Exposed a major bug in HYBGEN, now fixed in HYCOM
 - \circ MAX_LAYER_THICKNESS (DX0K) has been added to HYBGEN
 - A HYCOM1-like regridder is undergoing testing for HYCOM
 - More diapycnal diffusion than HYBGEN, less than HYCOM1