

Connecting the Great Lakes in MOM6

He Wang^{1,2,3} and Robert Hallberg²

¹ University Corporation for Atmospheric Research, Boulder, CO, USA
² NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
³ University of Michigan, Ann Arbor, MI, USA

With contributions from Alistair Adcroft (Princeton), Matthew Harrison (GFDL), Alan Wallcraft (FSU), Eric Chassignet (FSU), David Canon (UMich), Ayumi Fujisaki-Manome (UMich), Jia Wang (GLERL)

Outline

- Background
- Sub-grid scale topography
- Prototype of hydraulic control representation

The Laurentian Great Lakes

- Total surface area: 244,000 km²
- As deep as 400 m (Lake Superior)
- 21% of world's surface freshwater
- 3500 species of plants and animals
- 34 million population
- Vital economic resource

Why do we (ocean modelers) care?

- Physical scales and features are not that different.
 - Coriolis
 - Thermal inertia
 - Bathymetry, mixing, convection, surface waves, lake ice and etc..
- Regional climate driver
 - Lake circulations
 - Biases in climate models: missing or insufficient representation of the Great Lakes
 - As land
 - As a part of land model (single columns)
 - As ocean (a couple of grids and no circulation)

Building a Great Lakes model with MOM6

- Objective: MOM6 for the interconnected Great Lakes
 - A regional model: 1 km resolution
 - An interactive Great Lakes component in global ocean model and climate/earth system models: much coarser resolution
- Previous works: regional model
 - Separate lakes with closed basins
 - Need to specify zero mass flux at both lateral and surface boundaries for long term simulation

Depths of the Great Lakes on a 1-km model grid, referenced to sea level. The Lakes are connected by 1-km-wide artificial rivers.

Challenges in connecting the Great Lakes

- Mean water levels in the Great Lakes system is not uniform.
- (Narrow) rivers connect the individual lakes as well as the Great Lakes and the Atlantic Ocean.
- Water level can change rapidly along the waterways.
 - St. Marys Rapids
 - Niagara Falls
 - St. Lawrence Rapids
- Man-made structures (locks, canals, weirs, dams, and etc.) and international laws

Sub-grid scale topography

- Discretized model grid is always too coarse for real world topography/bathymetry.
 - Model topography has limited degrees of freedom, constrained by resolution: one single depth per grid cell.
- Cell edge depth is (often implicitly) derived from cell center depth.
 - No restriction on cell wall connectivity from topography
 - Narrow channels cannot be realistically represented.
- Cell center depth is an average of the cell.
 - Misplaced water masses
 - Pressure gradient
- Porous topography (Adcroft 2013)
 - Use simple profiles to represent the geometric effect of sub-grid scale topography
 - Weight functions of depth for connectivity and capacity

Illustration of layers intersecting two types of sub-grid scale feature: a porous barrier and a porous medium, from Adcroft (2013).

Constructing a weight function

Conditions:

• Weight function is zero below the deepest depth, one above the shallowest depth, and smaller than one in between.

$$w(z) = \begin{cases} 0, & z < D_{deep} \\ \psi(z), & D_{deep} \le z \le D_{shallow} \\ 1, & z > D_{shallow} \end{cases}$$

 $\psi(z)$: a three-parameter fit to a monomial of depth. [Appendix A, Adcroft (2013)]

• Integral between D_{deep} and $D_{shallow}$ should equal D_{mean} .

$$\int_{D_{deep}}^{D_{shallow}} \psi(z) dz = D_{mean}$$

- Mean face area at the wall -> connectivity
- Mean depth at the cell center -> capacity

(A special case) $\psi(z)$ is constant, independent of depth. Used in a number of models at well-known narrow channels.

Adjusting cell edges: porous barriers

Implementation: modify volume fluxes in continuity equation

•
$$h^{(n+1)} = h^{(n)} - \left[\delta_x\left(\alpha_x^{(n)}F_x^{(n)}\right) + \delta_y\left(\alpha_y^{(n)}F_y^{(n)}\right)\right] \cdot \Delta t/(\Delta x \Delta y)$$

- Transport is always reduced [$\alpha^{(n)} \leq 1$].
- For barotropic runs, α may only need to be calculated once.
- For baroclinic runs, α has a larger effect on deeper and denser flow transports.

Porous barriers applications

- Porous barriers produce similar arrival time in low resolution compared with high resolution.
- Make topography less sensitive to resolution

Global barotropic tides in MOM6 (Wang et al. (2024))

- Lower resolution porous barriers constructed from 0.04°
- Porous barriers significantly reduce tidal errors with the coarsened resolutions.

Adjusting cell centers: "porous media"

Implementation: modify layer thickness

• Solve
$$\eta_k^{(n)}$$
 from $h^{(n)} = \int_{\eta_{k+1}^{(n)}}^{\eta_k^{(n)}} w(z) dz$

- Not affecting fully submerged grid cells in one-layer
- Wetting and drying
- Multi-layers

Applications to the Great Lakes

Represent narrow rivers with porous barriers and porous media

- Alleviate structured grid's resolution constraint
 - may also help unstructured grid
- Realistic channel width at both regional and climate model resolution
- Can have V-shaped channel profile if desired

Hydraulic control

- Hydraulic jump: rapid transition from supercritical (Fr>1) to subcritical (Fr<1)
 - Great energy loss, extremely turbulent
- Critical section Fr=1
- For supercritical flow, discharge is determined by upstream reservoir depth.
 - Simple relationship: $Q_c = \left(\frac{2}{3}\right)^{\frac{3}{2}} w_s g^{\frac{1}{2}} \Delta z^{\frac{3}{2}}$

Representing hydraulic control in MOM6

- Barotropic momentum equation:
 - $u'^{(n+1)} = \Delta t \cdot (u^{(n)} + F)$, where F is the summation of all momentum forcings.
- A critical velocity: $u_c \propto \alpha \sqrt{Q_c g}$, α is a tuning parameter.
- Hydraulic control:
 - $u^{(n+1)} = \min(u'^{(n+1)}, u_c)$ [assuming u > 0]
- An additional forcing term F_{hc}
 - $u^{(n+1)} = \Delta t \cdot (u^{(n)} + F + F_{hc})$, where $F_{hc} = \min[\Delta t \cdot (u^{(n)} u_c + F), 0]$

Some preliminary tests

- Two-dimensional barotropic flow
- Specified inflow $(5000 m^3/s)$ at the left end
- Radiative OBC at the right end
- Grid size = 1 km
- Time step size = 10 s

Some preliminary tests

with hydraulic control term

original

Summary

- We plan to use MOM6 to simulate the Great Lakes, aiming for a dynamical and interactive component of a global ocean model and/or earth system model.
- Connecting the Great Lakes and maintaining the water levels is a major challenge.
- Sub-grid scale topography can help represent the narrow passages between lakes and also alleviates the shortcomings of coarse topography at global ocean model resolution.
- A prototype of hydraulic control representation is implemented in MOM6, which can help simulate rapids and waterfalls.