Bathymetry-aware mesoscale eddy parameterizations

Yan Wang

Department of Ocean Science

The Hong Kong University of Science and Technology

Joint Work with:

Huaiyu Wei (former student@HKUST; now postdoc@UCLA),

Chenyue Xie (former postdoc@HKUST; now faculty@USTC),

Julian Mak (HKUST), and Andrew Stewart (UCLA)

September 2024 | Boulder

Eddies export nutrients off the Eastern Boundary Upwelling System, thus limiting marine productivity (Gruber et al. 2011).

75[°] S

 θ (°C)

Eddies drive heat fluxes toward the ice shelves of Antarctica, shaping the abyssal MOC (Thompson et al. 2018).

Retrograde versus Prograde

Retrograde or upwelling

Prograde or downwelling

Wang and Stewart (2020); Wei, Wang, and Mak (2024)

Retrograde versus Prograde

Eddy and mean properties: <u>Prograde</u>

Prograde or downwelling

Wei, Wang, Mak, and Stewart (2022); Wei, Wang, and Mak (2024)

<u>Scaling of eddy buoyancy diffusivity: Prograde</u>

$$K_{\text{GEOM}} = \alpha \frac{\sqrt{Ri}}{f_0} E,$$

The "GEOMETRIC" theory (e.g. Marshall et al. 2012; Mak et al. 2022)

Scaling of eddy buoyancy diffusivity: Prograde

<u>Scaling of eddy buoyancy diffusivity: Prograde</u>

$$\begin{split} K_{\text{GEOM}} &= \alpha \frac{\sqrt{Ri}}{f_0} E, & \text{The "GEOMETRIC" theory}\\ (\text{e.g. Marshall et al. 2012; Mak et al. 2022}) \\ &\downarrow & \text{Nonlinear eddy growth rate} \\ \frac{f_0^2}{Ri} \cdot K_{\text{GEOM}} &= \alpha \cdot \overline{\sigma_{\text{E}}} \cdot E \equiv [2\sigma] \cdot E, \\ \text{Normalized Eady growth rate:} \quad \sigma_{\text{E}} = f_0 / \sqrt{Ri} \\ \sigma / [0.31 \cdot \sigma_{\text{E}}] \sim \mathcal{F}_{\text{GEOM}}(S) \\ \\ \mathcal{S} &= \left\langle \left| \frac{\partial H}{\partial y} \right| \frac{1}{|H|} \int_{-|H|}^0 \frac{N}{f_0} dz \right\rangle & \text{The slope Burger number dependence} \\ (\text{e.g. Brink, 2012; 2016; Brink and Cherian, 2013; Hetland, 2017; Chen et al, 2020).} \end{split}$$

<u>Scaling of eddy buoyancy diffusivity: Prograde</u>

Scaling of eddy buoyancy diffusivity: Prograde

Convert scaling into <u>eddy closure</u>: <u>Prograde</u>

Convert scaling into eddy closure: Prograde

Wei, Wang, and Mak (2024)

Convert scaling into <u>eddy closure</u>: <u>Prograde</u>

Wei, Wang, and Mak (2024)

Convert scaling into <u>eddy closure</u>: <u>Prograde</u>

Parameterization: Prograde

Wei, Wang, and Mak (2024)

Parameterization: Prograde

Wei, Wang, and Mak (2024)

Parameterization: Prograde

Wei, Wang, and Mak (2024)

Wang and Stewart (2018; 2020)

Dynamic ocean topography (cm)

Timmermans and Toole (2019)

Manucharyan and Isachsen (2019)

Timmermans and Toole (2019)

Manucharyan and Isachsen (2019)

(c)

$$\frac{\partial}{\partial t}\overline{u} \simeq \operatorname{Forcing} + f_0 \frac{\partial}{\partial z} \left(\frac{\overline{v'b'}}{\overline{b}_z} \right) - \frac{\partial}{\partial y} \overline{v'u'}$$

Eddy Reynolds stress transfers momentum offshore

$$\frac{\partial}{\partial t}\overline{u} \simeq \text{Forcing} + \left[f_0 \frac{\partial}{\partial z} \left(\frac{\overline{v'b'}}{\overline{b}_z}\right) - \left(\frac{\partial}{\partial y} \overline{v'u'}\right)\right]$$

Depth-integral gives (under equilibrium)

Eddy Reynolds stress transfers momentum offshore

$$\psi_{\rm EMF} + \psi_{\rm GM} \simeq \psi_{\rm Ekman} + \psi_{\rm Residual}$$

Depth-integral gives (under equilibrium)

Eddy Reynolds stress transfers momentum offshore

No slope dependence

$$\kappa_{\text{Geom}} = \gamma_{\text{Geom}} \frac{\sqrt{Ri_{\text{loc}}}}{f_0} (\text{EKE} + \text{EPE}),$$

Wang and Stewart (2020)

No slope dependence

$$\kappa_{\mathrm{MLT}} = \gamma_{\mathrm{MLT}} \sqrt{2 \cdot \mathrm{EKE}} \cdot \mathcal{L}_{\mathrm{Rh}},$$

Wang and Stewart (2020)

(a) Original and (b) slope-aware forms of the MLT-based scaling vs κ_{θ} .

$$\kappa_{\rm MLT} = \gamma_{\rm MLT} \sqrt{2 \cdot \rm EKE} \cdot L_{\rm Rh}, \qquad \delta = \frac{\rm bottom \ slope}{\rm isopycnal \ slope}$$
$$\gamma_{\rm MLT} = \gamma \left[\delta_{\rm loc} + \frac{1}{\delta_{\rm loc} + \Gamma} \right] \qquad (e.g. \ lsachsen, 2011)$$

Wang and Stewart (2020)

$$\frac{\partial}{\partial y}\overline{v'u'} \sim \mathcal{K}_q \cdot \beta_{\text{topog.}}, \quad \mathcal{K}_q \equiv C_{\text{eddy}}\frac{\text{EKE}}{f_0}\Big|_{\text{Barotropic}}$$

$$\frac{\partial}{\partial y}\overline{v'u'} \sim \mathcal{K}_q \cdot \beta_{\text{topog.}}, \quad \mathcal{K}_q \equiv C_{\text{eddy}}\frac{\text{EKE}}{f_0}\Big|_{\text{Barotropic}}$$
$$\frac{1}{v'u'} \sim \text{EKE}$$

$$\frac{\partial}{\partial y}\overline{v'u'} \sim \mathcal{K}_q \cdot \beta_{\text{topog.}}, \quad \mathcal{K}_q \equiv C_{\text{eddy}}\frac{\text{EKE}}{f_0}\Big|_{\text{Barotropic}}$$
$$\frac{1}{v'u'} \sim \text{EKE}$$

Consistent with barotropic "GEOMETRIC" (Hoskins et al., 1983; Marshall et al., 2012):

$$M = \frac{\overline{v'^2 - u'^2}^z}{2}, \quad N = \overline{u'v'}^z,$$
$$M^2 + N^2 \le \text{EKE}$$
$$N = \gamma_m E \sin 2\phi_m \cos^2 \lambda,$$

$$\frac{\partial}{\partial y}\overline{v'u'} \sim \mathcal{K}_q \cdot \beta_{\text{topog.}}, \quad \mathcal{K}_q \equiv C_{\text{eddy}}\frac{\text{EKE}}{f_0}\Big|_{\text{Barotropic}}$$
$$\frac{1}{v'u'} \sim \text{EKE}$$

Consistent with barotropic "GEOMETRIC" (Hoskins et al., 1983; Marshall et al., 2012):

$$M = \frac{\overline{v'^2 - u'^2}^z}{2}, \quad N = \overline{u'v'}^z,$$

 $M^2 + N^2 \le \text{EKE}$

$$N = \gamma_m E \sin 2\phi_m \cos^2 \lambda,$$

Resembling "selective decay" of 2D topographic turbulence (Bretherton and Haidvogel, 1976):

He and Wang (2024)

 $\overline{v'u'} \sim \text{EKE}$


```
\overline{v'u'} \sim \text{EKE}
```


Convert scaling(s) into eddy.closure(s): Retrograde

Convert scaling(s) into eddy.closure(s): Retrograde

Xie, Wei, and Wang (2024)

Impact of parameterized eddy momentum forcing: <u>Retrograde</u>

Impact of parameterized eddy momentum forcing: Retrograde

Xie, Wei, and Wang (2024)

Physics-based eddy.closure(s): Retrograde 2D runs

Physics-based eddy.closure(s): 3D coarse-grid "raw" flow

Acceptable stratification, wrong jet structures.

Physics-based eddy.closure(s): 3D coarse-grid "raw" flow

Acceptable stratification, wrong jet structures.

Physics-based eddy.closure(s): Retrograde3D.runs

Physics-based eddy.closure(s): 3D coarse-grid parameterized flow

Physics-based <u>eddy closure(s)</u>: 3D coarse-grid parameterized flow

Summary

- <u>Prograde</u> frontal systems are theorized and parameterized via GEOMETRIC adapted by an analytical function of the slope Burger number controlling efficiency of eddy buoyancy fluxes.
- <u>Retrograde</u> frontal systems are forced jointly by eddy buoyancy and momentum fluxes; the former can be quantified using a range of GM-based scalings, adapted via analytical functions of the topographic slope parameter.
- <u>Eddy momentum fluxes</u> across retrograde fronts depend linearly on eddy energy, and echo with barotropic eddy PV fluxes theorized in 2D topographic turbulence, driving prograde undercurrents.
- <u>Machine learning approaches</u> can augment physics-based, bathymetry-aware mesoscale eddy parameterizations by constraining eddy energy or/and forcing online.
- <u>Scale separation</u> may exist between eddy buoyancy and momentum forcing, which alludes to muting GM-based schemes but utilizing numerically-dissipated energy for driving subgrid-scale eddy momentum forcing in <u>eddy permitting regimes</u> across continental margins (*ongoing*).

Bathymetry-aware recipe (to be cont.):

[GM] Y. Wang, and A. L. Stewart, 2020, "Scalings for eddy buoyancy transfer across continental slopes under retrograde winds", Ocean Modelling, 147, 101579.

[Redi] H. Wei, and Y. Wang, 2021, "Full-depth scalings for isopycnal eddy mixing across continental slopes under upwelling-favorable winds", Journal of Advances in Modeling Earth Systems, 13, e2021MS002498.

[GM] H. Wei, Y. Wang, A. L. Stewart, and J. Mak, 2022, "Scalings for eddy buoyancy fluxes across prograde shelf/slope fronts", Journal of Advances in Modeling Earth Systems, 14, e2022MS00322.

[Redi] C. Xie, H. Wei, and Y. Wang, 2023a, "Impact of parameterized isopycnal diffusivity on shelf-ocean exchanges under upwelling-favorable winds: offline tracer simulations augmented by artificial neural network", Journal of Advances in Modeling Earth Systems, 15, e2022MS00342.

[GM + PV] C. Xie, H. Wei, and Y. Wang, 2023b, "Bathymetry-aware mesoscale eddy parameterizations across upwelling slope fronts: A machine learning-augmented approach", Journal of Physical Oceanography, 53, 2861–289.

[GM] H. Wei, Y. Wang, and J. Mak, 2024, "Parameterizing eddy buoyancy fluxes across prograde shelf/slope fronts using a slope-aware GEOMETRIC closure", Journal of Physical Oceanography, 54, 359–37.

[PV] J. He, and Y. Wang, In Press, "Multiple states of two-dimensional turbulence above topography", Journal of Fluid Mechanics, DOI: 10.1017/jfm.2024.633.

[GM + Energy] P. Deng, and Y. Wang, In Press, "Distinct impacts of topographic versus planetary PV gradients on baroclinic turbulence", Journal of Physical Oceanography, Early Online Release: https://doi.org/10.1175/JPO-D-24-0014.1.