Anthropogenic aerosols mask increases in US rainfall by greenhouse gases

William D. Collins, **Mark D. Risser**, Michael F. Wehner, Travis A. O'Brien, Huanping Huang, and Paul Ullrich

LBNL, UC Berkeley, Indiana University, LSU, and LLNL Supported by Department of Energy / Biological and Environmental Research

March 14, 2024

Goals of this study

- Detect systematic trends in observed CONUS-mean precipitation and 20-year return values, if any
- Attribute trends to anthropogenic forcings from GHGs and aerosols
- Compare the results of this framework applied to observations and to CMIP6 ESMs

Time Series of Radiative Forcings

Our philosophy in using model data

- Records of short-lived climate forcers (SLCFs) are uncertain.
- Complicated response of precipitation to SLCFs is uncertain.
- ► Therefore, traditional "fingerprinting" D&A is ruled out.
- We will use models in perfect-data sense, to test and guide fits applied directly to observations.

Advantage: We can use the diversity of responses to SLCFs, etc. across the CMIP6 MME to help ensure our D&A is insensitive to structural uncertainty.

CMIP6 and C20C+ simulations we use

D&A framework outside of aerosols:

- CMIP6 core DECK: piControl, historical, 1pctCO2
- CMIP6 DAMIP: hist-aer, hist-CO2, hist-GHG, hist-nat, hist-strato3
- CMIP6 LUMIP: hist-noLu
- ► C20C+: all-hist, plus15-future, plus20-future

Additional simulations needed for aerosol attribution:

- CMIP6 AerChemMIP: histSST, piClim-control, piClim-aer, piClim-SO2, piClim-BC, piClim-OC, piClim-NH3
- ▶ PDRMIP: (Papers on) Base, Sul×5, Suleur, Sulasia
- ▶ SO₂ Sourcing: CAM5-MAM runs from Yang et al, 2018

The Flowchart for the Framework

[†] S16 = Samset et al. (2016); M17 = Myhre et al. (2017); L18 = Liu et al. (2018)

Hypotheses

Label	Hypothesis	Conclusion/confidence	Model data sets used
H1	Can we correctly identify the magnitude of the WMGHG effect?	Yes / Likely	DAMIP (hist-GHG); CMIP6 pi- Control and 1pctCO2
H2	Can we isolate WMGHG dependence in a noisy climate system with all forcings?	Yes / Very likely	DAMIP (hist-GHG, hist-aer); CMIP6 historical
H3	Are there meaningful trends due to individ- ual forcing agents?	Yes: GHG & SO ₂ / <i>Likely</i>	DAMIP (hist-GHG, hist-aer, hist-nat, hist-stratO3); LUMIP (hist-noLu); CMIP6 historical
H4	Are aerosol effects due to local, fast response to $SO_2?$	Yes / Likely→Certain	AerChemMIP and PDRMIP
H5	Do the individual forcing agents influ- ence the relationships between the climate drivers and precipitation?	Yes / Likely	DAMIP (hist-GHG, hist-aer, hist-nat, hist-stratO3); LUMIP (hist-noLu); CMIP6 historical
H6	Can we distinguish the WMGHG effect from the aerosol effect?	Yes / Likely	DAMIP (hist-GHG, hist-aer); CMIP6 historical
H7	Is the background variability / fast internal variability / weather state dependent?	Yes / Certain	C20C+ All-Hist; HAPPI Plus15- and Plus20-Future

Detection and Attribution Formulae for Precipitation P

$$P(t) = P_F(t) + P_D(t) + P_W(t)$$

$$P_F(t) \approx P_0 + \beta_{\text{Slow}} F_{\text{Slow}}(t, \tau_{\text{Slow}}) + \beta_{\text{Fast}} F_{\text{Fast}}(t, \tau_{\text{Fast}})$$

$$F_{\text{Slow}}(t, \tau_{\text{Slow}}) = F_{\text{GHG}}(t, \tau_{\text{Slow}}) + F_{\text{AER-Glob}}(t, \tau_{\text{Slow}})$$

$$F_{\text{Fast}}(t, \tau_{\text{Fast}}) = F_{\text{AER-local}}(t, \tau_{\text{Fast}})z$$

$$P_D(t) \approx \sum_{d=\text{ELI,AO,NAO,PNA,AMO}} \beta_d d(t)$$

$$1 - \frac{\operatorname{Var} P_W(t, \Delta T)}{\operatorname{Var} P(t)} \approx 1 - \frac{\operatorname{Var} P_W(t, 0)}{\operatorname{Var} P(t)} = \frac{S}{N} \approx \text{Constant}$$

P_F is the forced response, and the focus of this talk.
 P_D is the response due to internal interannual variability.
 P_W is weather noise.

For historical CONUS rainfall, SO₂ is the dominant aerosol

phys.org

How to measure SO₂ forcing given lack of observations?

Ad hoc solution: Use SO₂ emission due to CMIP6 diversity

Response of precipitation to anthropogenic forcings

Hatching = statistically significant attribution for moderate (-) and strong (+) significance

(a) Grid-box attribution: mean precipitation response

Time to emergence of CONUS-wide averages

Heterogeneous attribution signals across CMIP6

The sign and magnitude are determinate across the MME.

Thank you for attending Questions?

