Anthropogenic aerosols mask increases in US rainfall by greenhouse gases

William D. Collins, Mark D. Risser, Michael F. Wehner,
Travis A. O'Brien, Huanping Huang, and Paul Ullrich
LBNL, UC Berkeley, Indiana University, LSU, and LLNL
Supported by Department of Energy / Biological and Environmental Research

March 14, 2024

Goals of this study

- Detect systematic trends in observed CONUS-mean precipitation and 20-year return values, if any
- Attribute trends to anthropogenic forcings from GHGs and aerosols
- Compare the results of this framework applied to observations and to CMIP6 ESMs

Time Series of Radiative Forcings

(a) GHG: sum-total forcings

(c) Aerosol effective radiative forcing (AER-glob)

(b) CONUS-average SO2 emissions (AER-local)

(d) Lagged forcings: GHG, AER-glob, Sum

Our philosophy in using model data

- Records of short-lived climate forcers (SLCFs) are uncertain.
- Complicated response of precipitation to SLCFs is uncertain.
- Therefore, traditional "fingerprinting" D\&A is ruled out.
- We will use models in perfect-data sense, to test and guide fits applied directly to observations.

Advantage: We can use the diversity of responses to SLCFs, etc. across the CMIP6 MME to help ensure our D\&A is insensitive to structural uncertainty.

CMIP6 and C20C + simulations we use

D\&A framework outside of aerosols:

- CMIP6 core DECK: piControl, historical, 1pctCO2
- CMIP6 DAMIP: hist-aer, hist-CO2, hist-GHG, hist-nat, hist-strato3
- CMIP6 LUMIP: hist-noLu
- C20C+: all-hist, plus15-future, plus20-future

Additional simulations needed for aerosol attribution:

- CMIP6 AerChemMIP: histSST, piClim-control, piClim-aer, piClim-SO2, piClim-BC, piClim-OC, piClim-NH3
- PDRMIP: (Papers on) Base, Sul×5, Suleur, Sulasia
- SO_{2} Sourcing: CAM5-MAM runs from Yang et al, 2018

The Flowchart for the Framework

${ }^{\dagger}$ S16 $=$ Samset et al. (2016); M17 $=$ Myhre et al. (2017); L18 $=$ Liu et al. (2018)

Hypotheses

Label	Hypothesis	Conclusion/confidence	Model data sets used
H1	Can we correctly identify the magnitude of the WMGHG effect?	Yes / Likely	DAMIP (hist-GHG); CMIP6 piControl and 1pctCO2
H2	Can we isolate WMGHG dependence in a noisy climate system with all forcings?	Yes / Very likely	DAMIP (hist-GHG, hist-aer); CMIP6 historical
H3	Are there meaningful trends due to individual forcing agents?	Yes: GHG \& $\mathrm{SO}_{2} /$ Likely	DAMIP (hist-GHG, hist-aer, hist-nat, hist-stratO3); LUMIP (hist-noLu); CMIP6 historical
H4	Are aerosol effects due to local, fast response to SO_{2} ?	Yes / Likely \rightarrow Certain	AerChemMIP and PDRMIP
H5	Do the individual forcing agents influence the relationships between the climate drivers and precipitation?	Yes / Likely	DAMIP (hist-GHG, hist-aer, hist-nat, hist-stratO3); LUMIP (hist-noLu); CMIP6 historical
H6	Can we distinguish the WMGHG effect from the aerosol effect?	Yes / Likely	DAMIP (hist-GHG, hist-aer); CMIP6 historical
H7	Is the background variability / fast internal variability / weather state dependent?	Yes / Certain	C20C+ All-Hist; HAPPI Plus15and Plus20-Future

Detection and Attribution Formulae for Precipitation P

$$
\begin{aligned}
P(t) & =P_{F}(t)+P_{D}(t)+P_{W}(t) \\
P_{F}(t) & \approx P_{0}+\beta_{\text {Slow }} F_{\text {Slow }}\left(t, \tau_{\text {Slow }}\right)+\beta_{\text {Fast }} F_{\text {Fast }}\left(t, \tau_{\text {Fast }}\right) \\
F_{\text {Slow }}\left(t, \tau_{\text {Slow }}\right) & =F_{\text {GHG }}\left(t, \tau_{\text {Slow }}\right)+F_{\text {AER-Glob }}\left(t, \tau_{\text {Slow }}\right) \\
F_{\text {Fast }}\left(t, \tau_{\text {Fast }}\right) & =F_{\text {AER-local }}\left(t, \tau_{\text {Fast }}\right) z \\
P_{D}(t) & \approx \sum_{d=\text { ELIAO,NAO,PNA,AMO }} \beta_{d} d(t)
\end{aligned}
$$

$$
1-\frac{\operatorname{Var} P_{W}(t, \Delta T)}{\operatorname{Var} P(t)} \approx 1-\frac{\operatorname{Var} P_{W}(t, 0)}{\operatorname{Var} P(t)}=\frac{S}{N} \approx \text { Constant }
$$

- P_{F} is the forced response, and the focus of this talk.
- P_{D} is the response due to internal interannual variability.
- P_{W} is weather noise.

For historical CONUS rainfall, SO_{2} is the dominant aerosol

phys.org

How to measure SO_{2} forcing given lack of observations?

Ad hoc solution: Use SO_{2} emission due to CMIP6 diversity

Response of precipitation to anthropogenic forcings

$$
\begin{aligned}
& \text { Hatching = statistically significant attribution } \\
& \text { for moderate }(-) \text { and strong }(+) \text { significance }
\end{aligned}
$$

(a) Grid-box attribution: mean precipitation response

Time to emergence of CONUS-wide averages

Heterogeneous attribution signals across CMIP6

(a) Precipitation rate

(b) 20-year return value

- The sign and magnitude are determinate across the MME.

Thank you for attending Questions?

