Backscatter in 1/4° CESM3-MOM6

Houssam Yassin

Contributions from:

Gokhan Danabasoglu, Gustavo Marques, Ian Grooms and the Eddy Energy Climate Process Team

11 September 2024

How should eddies be parameterized in $1/4^{\circ}$ CESM-MOM6?

Mercator Grid Resolution Required to Resolve Baroclinic Deformation Radius with 2 Δx

Hallberg 2013

Isopycnal height diffusion

Do we need to parameterize

Re-entrant channel with 25 km grid spacing

Hyperviscosity and eddies

 $R = L_d / \Delta$

 $max(R) \approx 6.5$ near the equator

	QG: Six-layer, double gyre			
	$R = L_d / \Delta$	KE fraction		
	8	1		
	4.5	0.8 – 0.92		
	2.6	0.55 - 0.8		
	1.9	0.35 – 0.7		
	1.3	0.2 - 0.6		
.00	Grooms	s (2023)		

Challenges in modeling eddies in the gray zone

Isopycnal height diffusion eliminates most eddies 2) Eddies are excessively dissipated by hyperviscosity

Challenges in modeling eddies in the gray zone

Isopycnal height diffusion eliminates most eddies
Eddies are excessively dissipated by hyperviscosity

 $\partial_{\tau} u + d$ **Momentum equation:**

Solution: Use backscatter instead of isopycnal height diffusion.

$$\dots = -\nabla \left[\nu_4 \nabla \left(\nabla^2 \boldsymbol{u} \right) \right] + \nabla \left(\nu_2 \nabla \boldsymbol{u} \right)$$

hyperviscosity anti-viscosity

Backscatter in global models: Juricke et al. 2020: FESOM2 Chang et al. 2023: OM4-MOM6

Backscatter in global models: Juricke et al. 2020: FESOM2 Chang et al. 2023: OM4-MOM6

Increases eddy energy

Backscatter in global models: Juricke et al. 2020: FESOM2 Chang et al. 2023: OM4-MOM6

Reduces SST biases

Increases eddy energy

How do you choose ν_2 ?

Scheme	Prognostic equation?	Prognostic equation? Vertical structure	
MEKE + BK Chang et al. 2023	2D	No	Jansen et al. (20 ⁻
Dynamic BK <i>Juricke et al. 2</i> 019	3D	3D Yes	
Kinematic BK <i>Juricke et al. 2020</i>	None	Yes	Juricke et al. (20)
MEKE+BK (EBT)	2D	Yes	Yankovsky et al. (20
Leith+E	None	Yes	Grooms (2023)

 $\partial_t \boldsymbol{u} + \ldots = -\nabla \left[\nu_4 \nabla \left(\nabla^2 \boldsymbol{u} \right) \right] + \nu_2 \nabla^2 \boldsymbol{u}$

hyperviscosity

Model Setup

CESM-MOM6 forced ice-ocean configuration

- 1/4 degree

- hybrid vertical coordinates (75 levels).

JRA-55

WOA18 January

KPP

- Biharmonic Smagorinksy

- Mixed-layer restratification

Experiments

Model Run	GM & Reddi	Backscatter scheme	Condition	Time (Years)
Control		None		10
BK		MEKE Equivalent barotropic	Backscatter when $L_d > \Delta/2$	10
GM	1000 m²/s Equivalent barotropic	None	GM when $L_d < \Delta/2$	10
GM+BK	1000 m²/s Equivalent barotropic	MEKE Equivalent barotropic	GM when $L_d < \Delta/2$ Backscatter when $L_d > \Delta/2$	10
GM+LeithBK	1000 m²/s Equivalent barotropic	Leith+E	GM when $L_d < \Delta/2$ Backscatter when $L_d > \Delta/2$	0

- **GM:** Only apply GM in *light blue region*
- Only apply backscatter in *dark blue region* BK:
- **GM+BK:** Only apply GM in *light blue region* Only apply backscatter in *light blue* region

We never apply GM and backscatter in the same location.

Why use a resolution function to apply backscatter?

1) If $L_d \ll \Delta$, we no longer marginally resolve eddies.

2) We get a large polynya in the Weddell Sea

What does backscatter do?

After 10 years of model time...

Energizes eddies. Increase SSH variability. **Reduces SST biases** in Northern Hemisphere. More barotropic ocean.

Increases SST and SSS of Southern Ocean. Increases southward heat transport. **Deepens Southern Ocean mixed layers** Shifts deep mixed layers in Southern Ocean to the south.

SSH Standard Deviation

Control

BK - Control

GM - Control

Barotropic KE fraction GM - Control

Control

Control - Obs

BK - Control

SST

GM - Control

GM+BK - Control

Δ SST for different models

BACK1-REF

Juricke et al. 2020

Maximum Mixed Layer Depth

GM - Control

GM+BK - Control

2000

- 1750

- 1500

- 1250

- 1000

- 750

- 500

- 250

~ 0

(meters Depth

Deep MLs shift poleward in CESM-MOM6 but remain fixed in FESOM2 Shallowing of mixed-layers on the Antarctic coastal shelf.

Surface salinity

Control - Obs

BK - Control

GM - Control

Mechanism for increased heat transport

Mid-depth cell in southern hemisphere transports heat northwards.

Eddies set up opposing circulation, values and larger southward heat transport.

Eddies set up opposing circulation, weakening mid-depth cell, leading to

What does backscatter do?

After 10 years of model time...

Energizes eddies. Increase SSH variability. **Reduces SST biases** in Northern Hemisphere. More barotropic ocean.

Increases SST and SSS of Southern Ocean. Increases southward heat transport. **Deepens Southern Ocean mixed layers** Shifts deep mixed layers in Southern Ocean to the south.

Total sea ice area in September

Sea ice area on 0010-09

Chang et al. 2023

Juricke et al. 2020

Surface salinity bias in control

Maybe the problem is with the control?

If southward transport of heat/freshwater is due to eddies... then we need a control with the appropriate biases

- **FESOM2** saw largest bias reductions in the Southern Ocean
 - Southern ocean cooler and less saline than observations

What does backscatter do?

Energizes eddies. Reduces SST biases (in NH) More barotropic ocean.

Increases SST and SSS of Southern Ocean. Increases southward heat transport. **Deepens Southern Ocean mixed layers** Shifts deep mixed layers in Southern Ocean to the south.