Ocean Model Development, Data-driven Parameterizations, and Machine Learning in Ocean Models of the Earth System Workshop

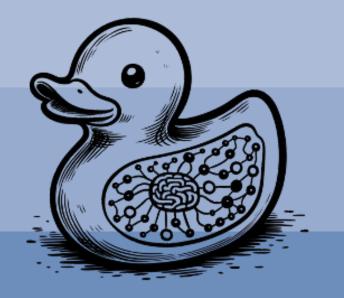
9-12 September 2024 – Boulder, Colorado

Towards a Fully Machine Learned Earth System Model at ECMWF

Lorenzo Zampieri & many colleagues

Ocean Modelling Team, Earth System Modelling, Research Dept. lorenzo.zampieri@ecmwf.int

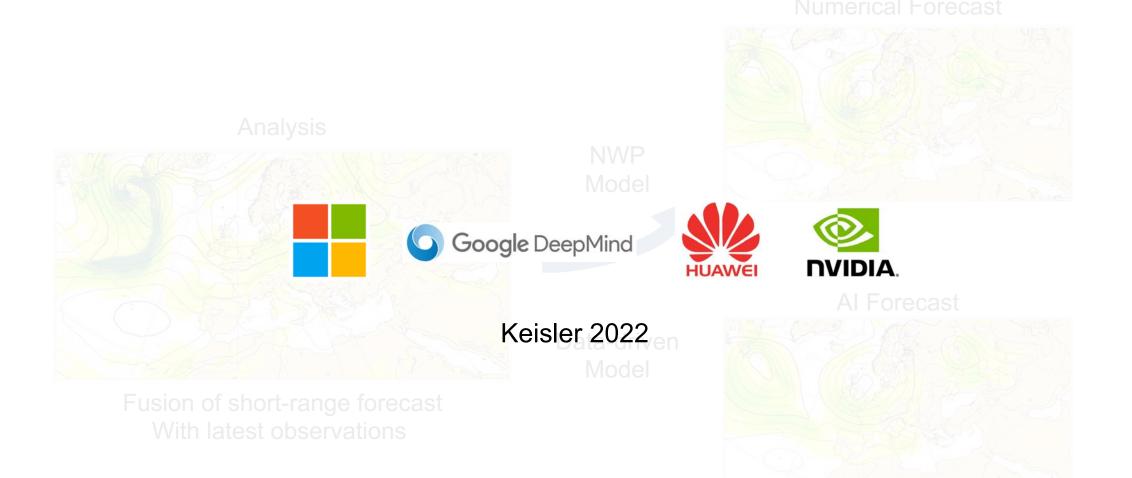
AIFS team: Rilwan Adewoyin, Mihai Alexe, Zied Ben Bouallègue, Matthew Chantry, Mariana Clare, Jesper Dramsch, Peter Dueben, Joffrey Dumont Le Brazidec, Rachel Furner, Sara Hahner, Simon Lang, Christian Lessig, Linus Magnusson, Michael Maier-Gerber, Gert Mertes, Gabriel Moldovan, Ana Prieto Nemesio, Cathal O'Brien, Florian Pinault, Jan Polster, Thomas Rackow, Baudouin Raoult, Mario Santa Cruz, Jakob Schloer, Helen Theissen, Steffen Tietsche, Lorenzo Zampieri



ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

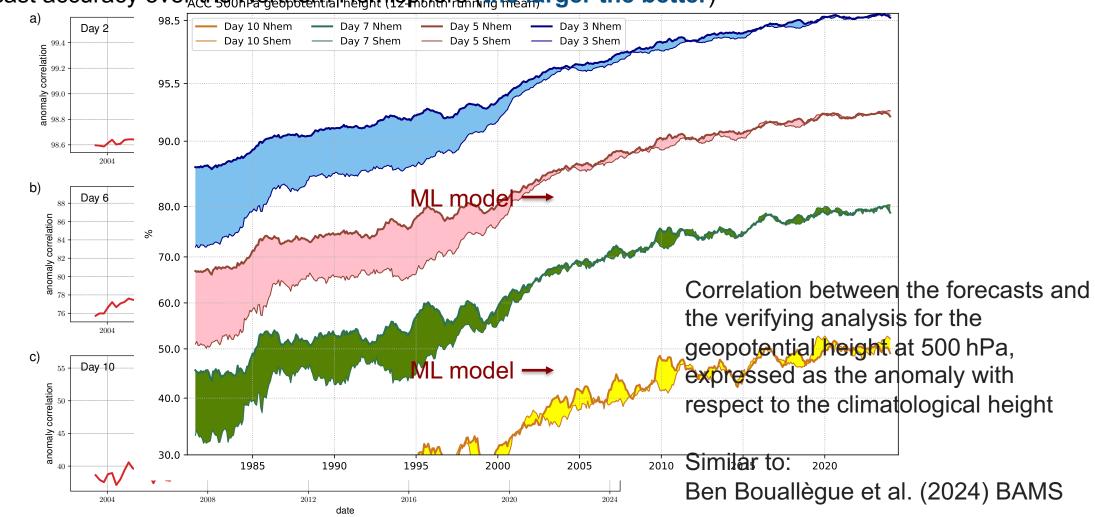
Funded by the European Union **Destination** Earth

The Artificial Intelligence (AI) Revolution in Weather Forecasting



ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Skill of ML models in the context of the "NWP Quiet Revolution"



Forecast accuracy over Accession Page potential height (is phere (the larger the better)

Skills of ML weather forecast models

		Pressure 500hPa geopotential RMSE [kg ² /m ²]				Temperature 850hPa temperature RMSE [K]				Humidity 700hPa specific humidity RMSE [g/kg]					85		nd Veo		/s]						
	IFS HRES	42	135	304	521	801	0.62	1.16	1.82	2.63	3.63	0.55	0.96	1.27	1.53	1.81	1.69	3.29	5.20	7.11	9.14				
-	IFS ENS Mean	42	132	277	439	621	0.65	1.11	1.62	2.17	2.80	0.51	0.84	1.06	1.22	1.38	1.63	2.98	4.44	5.74	6.94				
ā	ERA5 Forecasts	43	142	316	534	811	0.59	1.19	1.87	2.68	3.66	0.53	1.01	1.33	1.59	1.86	1.63	3.40	5.37	7.26	9.23				
	Pangu-Weather (oper.)	45	136	300	510	785	0.65	1.09	1.74	2.54	3.55	0.53	0.86	1.17	1.45	1.76	1.71	3.03	4.85	6.75	8.82				
	GraphCast (oper.)	40	124	277	477	751	0.53	0.93	1.56	2.36	3.40	0.48	0.76	1.03	1.29	1.59	1.48	2.74	4.52	6.41	8.53				
	Keisler (2022)	66	174	345	544	787	0.81	1.22	1.87	2.63	3.55	0.65	0.94	1.19	1.41	1.65	2.26	3.51	5.17	6.85	8.62				
	Pangu-Weather	44	133	294	501	778	0.62	1.05	1.71	2.51	3.54	0.53	0.88	1.19	1.47	1.79	1.66	3.00	4.82	6.71	8.79				
	Pangu-Weather GraphCast	39	124	274	468	731	0.51	0.94	1.56	2.33	3.36	0.47	0.79	1.06	1.30	1.59	1.42	2.76	4.44	6.22	8.17				
	FuXi	40	125	276	433	631	0.54	0.97	1.59	2.14	2.91						1.47	2.80	4.49	5.64	7.02				
	SphericalCNN	54	161	338	546	815	0.73	1.18	1.86	2.64	3.62	0.59	0.89	1.17	1.43	1.72	2.05	3.38	5.17	7.01	8.98				
	NeuralGCM 0.7°	37	115	267	469	751	0.54	0.97	1.58	2.38	3.42	0.48	0.83	1.12	1.40	1.71	1.49	2.81	4.57	6.49	8.64				
	NeuralGCM ENS Mean	43	126	266	424	606	0.65	1.02	1.53	2.10	2.75	0.54	0.81	1.02	1.19	1.37	1.76	2.88	4.28	5.59	6.83				
	Climatology	820	820	820	820	820	3.44	3.44	3,44	3.44	3.44	1.59	1.59	1.59	1.59	1.59	7.89	7.89	7.89	7.89	7.89				
		i	3 Lead	5 time	7	10	i	3 Lead	5	7	10	i	3	5 time	7	10	i	3	5 time	7	10				
			Leau	ume	<	-50 -	-20 -	-10	-5	-2	-1	i	2	5	10		50	F	rom	v	Veath es.rese			onerbe	ench/
	C ECMV	VF	EL	JROP	EAN	CENT	RE FO	R ME	DIUN	I-RAN	IGE W	'EATH	ER F	OREC	ASTS	6						0	0		4

Open Questions

How much is still to gain from ML techniques in weather forecasting?

Can we extend ML weather forecasting beyond the medium-range (15 days into the future)?

Can the same methodology be valuable also for other Earth system components?

Can we have a reliable ML model for climate?

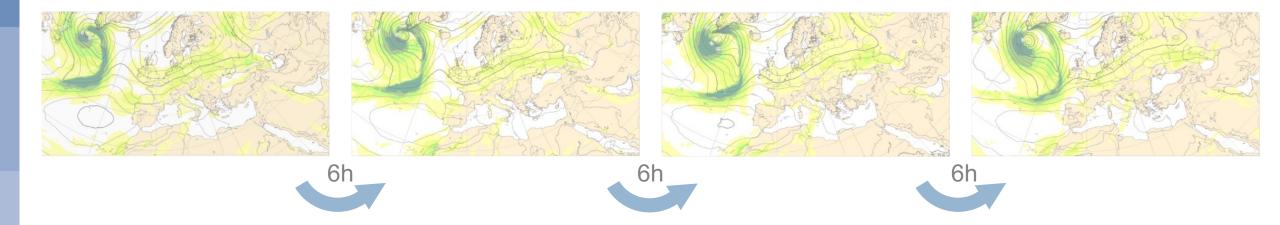
Presentation Structure

PART 1: ECMWF approach to medium-range weather forecasting with ML

PART 2: Exploratory work and future perspectives on non-atmospheric ML model components

AIFS – The Artificial Intelligence Forecast System ECMWF's data-driven forecast model

TRAINING: The AI model learns from approximately 40 years of ECMWF's ERA5 reanalysis data, stepping 6h from analysis to analysis



For forecasting, we autoregressively step the trained model 6h into the future $x_n = f(x_{n-1})$

Similar approach followed by many research groups and tech companies (Google Deepmind, NVIDIA, Keisler, Huawei, ...)

AIFS – The Artificial Intelligence Forecast System

ECMWF's data-driven forecast model

CURRENT MODEL DESIGN:

Updated at the beginning of 2024 - ~0.25° resolution

- Attention based GNN for encoder/decoder
- Transformer backbone in the processor
- Trained in ~1 week on 64 GPUs

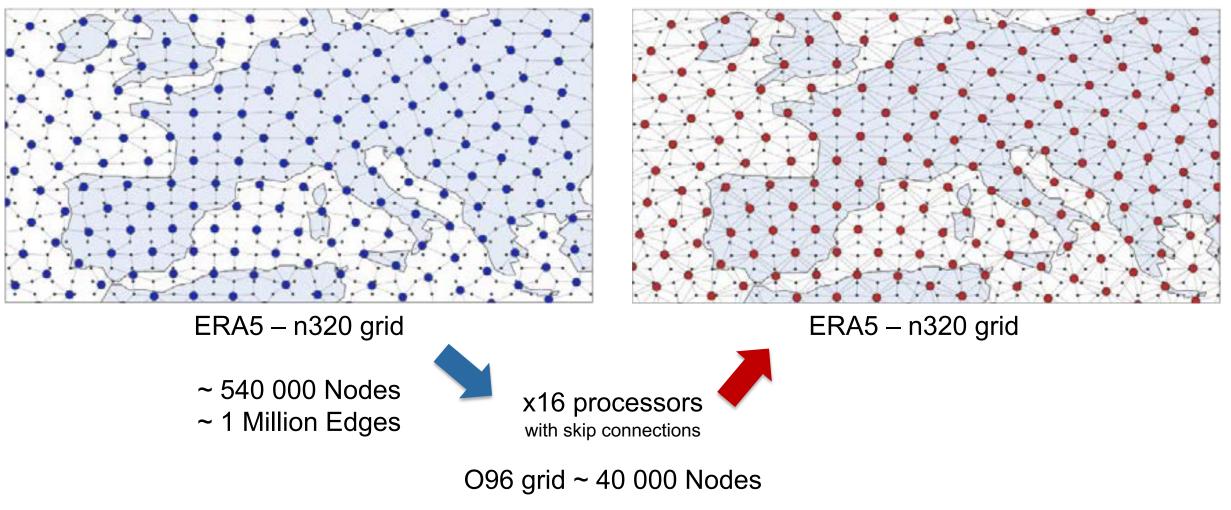
AIFS - ECMWF'S DATA-DRIVEN FORECASTING SYSTEM

A PREPRINT										
Simon Lang*	Mihai Alexe*	Matthew Cha	ntry	Jesper Dran	nsch	Florian Pin	ault	Baudouin Raoult		
Mariana (C. A. Clare	Christian Les	Michael N	Maier	Gerber	Lin	nus Magnusson			
Zied Ben Boua	allègue Ana P	rieto Nemesio	Pete	r D. Dueben	And	rew Brown	Flo	orian Pappenberger		
Florence Rabier										
May 2024										

AIFS – The Encoder and Decoder

Encoder, GNN

Decoder, GNN



AIFS – The Processor

Transformer (like in LLMs) that works with a sliding attention window

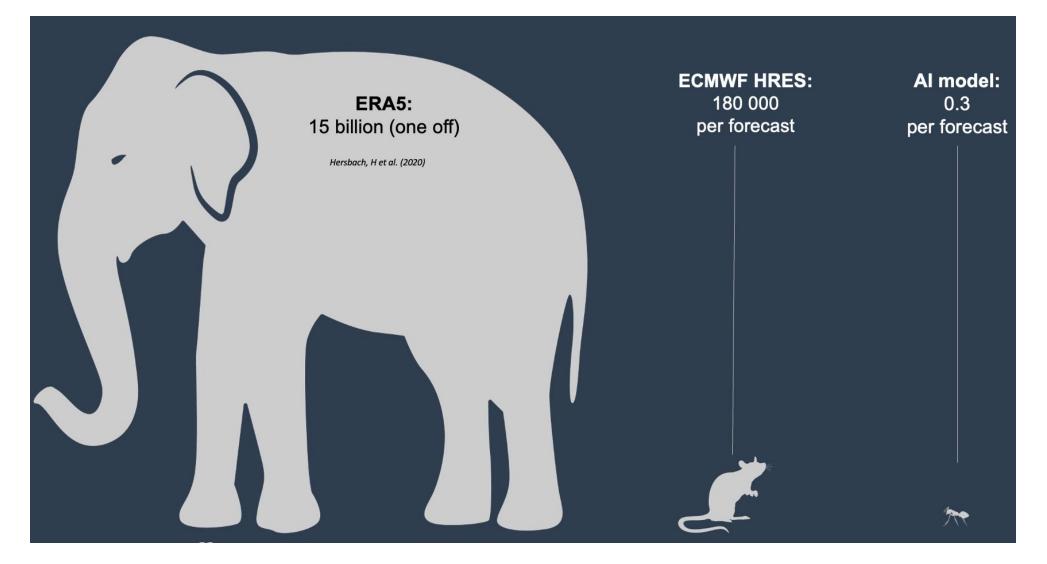
Orange point:Target nodeBlue points:Nodes that the target nodes attend in one processor layerGray points:How far information can travel within multiple processor layers

(Here lower resolution than AIFS processor grid for visualization purposes)

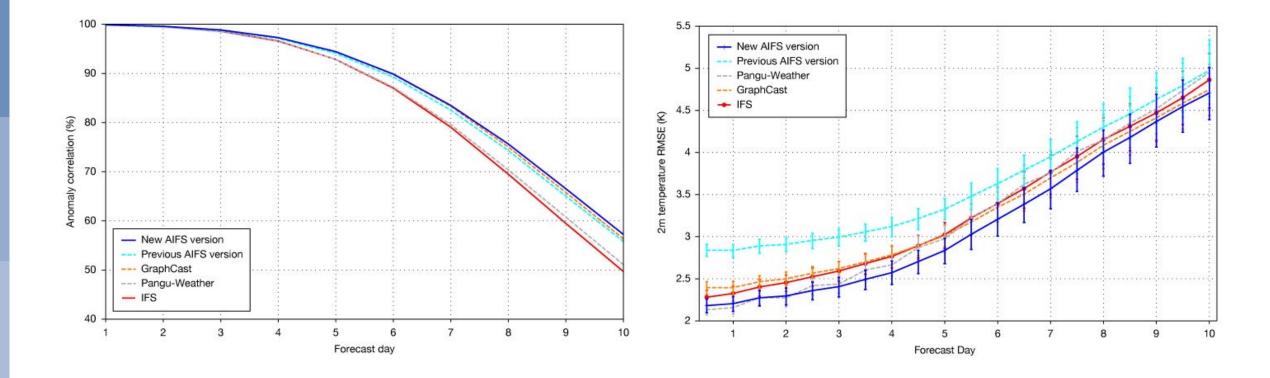


New transformer architecture in use since February 2024:

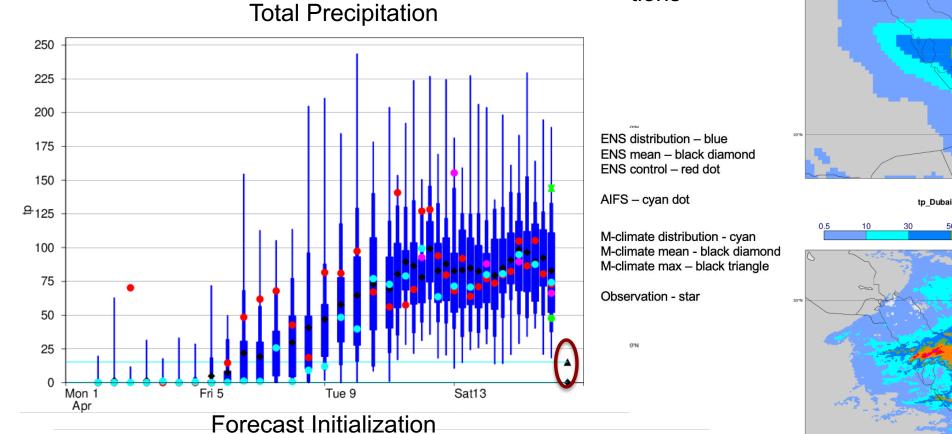
How costly is AIFS?



AIFS forecast scores in 2022

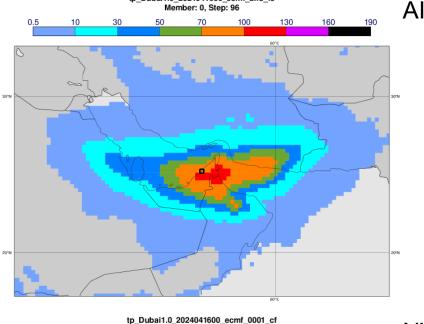


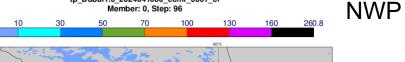
Case Study – Extreme precipitations in the UAE region (16 April 2024)



tions

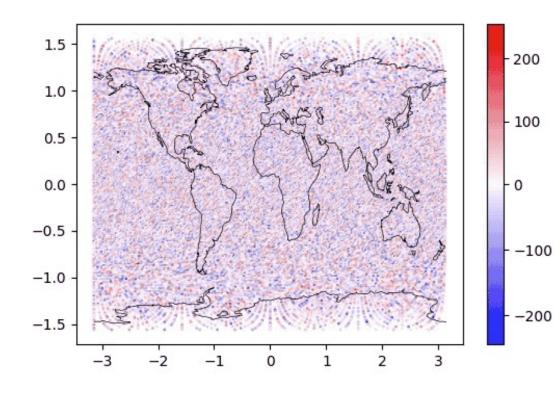
Day 3 forecast tp_Dubai1.0_2024041600_ecmf_aifs_fc

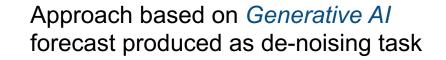




EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

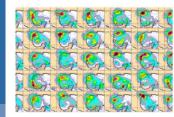
Ensemble forecasting with AIFS





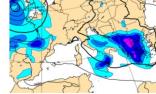
Similar approach as GenCast by Google DeepMind. *Price et al. (2023)*

AIFS Blog



Enter the ensembles

21 June 2024 We introduce a first version of an ensemble AIFS, explain how it works, show some early results and explain where you can view charts.



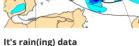
4 March 2024

Data-driven regional modelling

23 April 2024

charts

With colleagues from MET Norway, we describe our collaboration on regional modelling and outline Anemoi, our work towards an ML framework for data-driven weather forecasts.



We provide an update on the AIFS, including the addition of precipitation fields and open AIFS data for all.

First update to the AIFS

16 January 2024

We have introduced a new version of the AIFS that now runs at a horizontal resolution of 28 km (0.25°) and has an updated architecture. The new model version improves forecast scores, especially for surface variables, where resolution is crucial.

https://www.ecmwf.int/en/about/media-centre/aifs-blog

13 December 2023 With the introduction of a new machine learning (ML) model in our web charts, we discuss the interpretation of scores, the performance/realism dilemma for ML model developers, and how ensemble

systems could help in this case.

A new ML model in the ECMWF web

ECMWF unveils alpha version of new ML model

13 October 2023

This blog introduces an important companion to the Integrated Forecasting System (IFS), the AIFS, our Artificial Intelligence/Integrated Forecasting System. It is one of three components of our new machine learning project.

Check out the AIFS blog on the **ECMWF** website!

CECMWF | Charts

😗 Help 🔻 🔹 Log i

f Home / Charts catalogue

Q Search products	
Range	
Medium (15 days)	
Extended (42 days)	
Long (Months)	

Type

Forecasts

Verification

Component

Surface

Atmosphere

Product type

High resolution forecast (HRES)

Ensemble forecast (ENS)

Combined (ENS + HRES)

Extreme forecast index

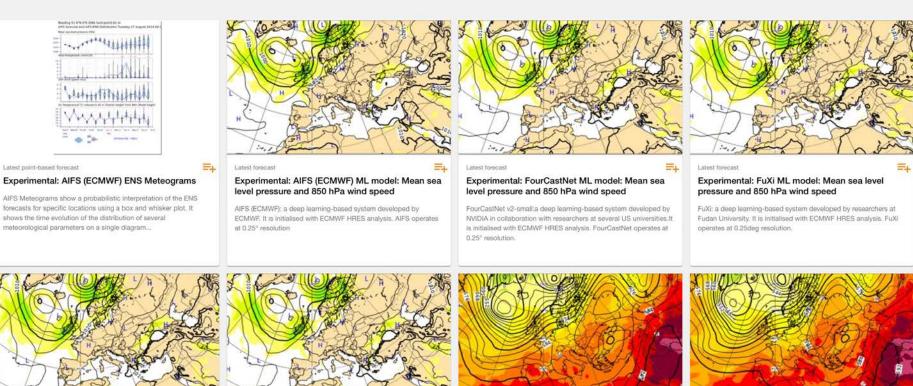
Point-based products

Experimental: AIFS

Dansarahan

Experimental: Machine learning models

Atmospheric composition



Latest forecast

=+

Experimental: GraphCast ML model: Mean sea Experimental: Pangu-Weather ML model: Mean sea level pressure and 850 hPa wind speed

> Pangu-Weather: a deep learning-based system developed by Huawei. It is initialised with ECMWF HRES analysis, Pangu-Weather operates at 0.25° resolution.

Latest forecast

=+

Experimental: AIFS (ECMWF) ML model: 500 hPa geopotential height and 850 hPa temperature

=+

AIFS (ECMWF): a deep learning-based system developed by ECMWF. It is initialised with ECMWF HRES analysis, AIFS operates at 0.25° resolution

Latest forecast

Experimental: FourCastNet ML model: 500 hPa geopotential height and 850 hPa temperature

FourCastNet v2-small:a deep learning-based system developed by NVIDIA in collaboration with researchers at several US universities.It is initialised with ECMWF HRES analysis. FourCastNet operates at 0.25° resolution.

Latest forecast

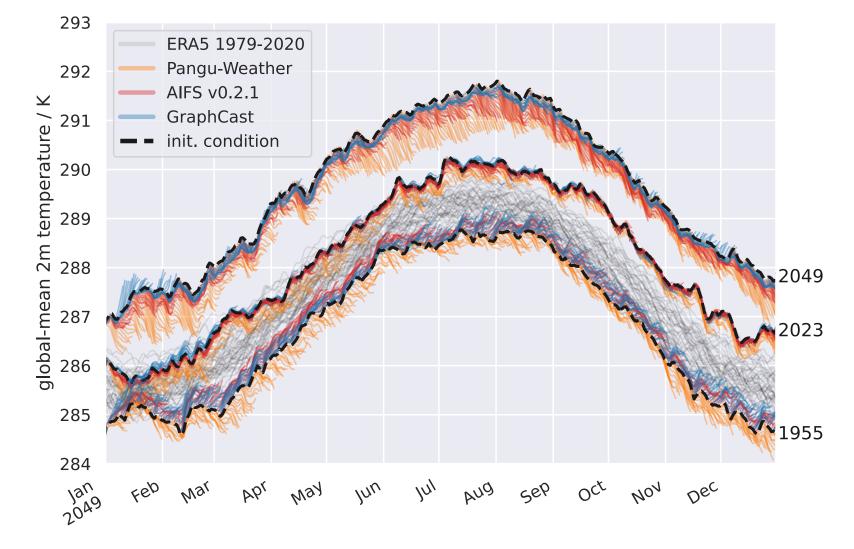
level pressure and 850 hPa wind speed

analysis. GraphCast operates at 0.25° resolution.

GraphCast (Google DeepMind): a deep learning-based system

developed by Google DeepMind.It is initialised with ECMWF HRES

ML models beyond the traditional medium-range horizon



-2

-3

2



AIFSv0.2.1 10-day cooling in 2049

Funded by the European Union

Destination Earth

Wave modelling within AIFS

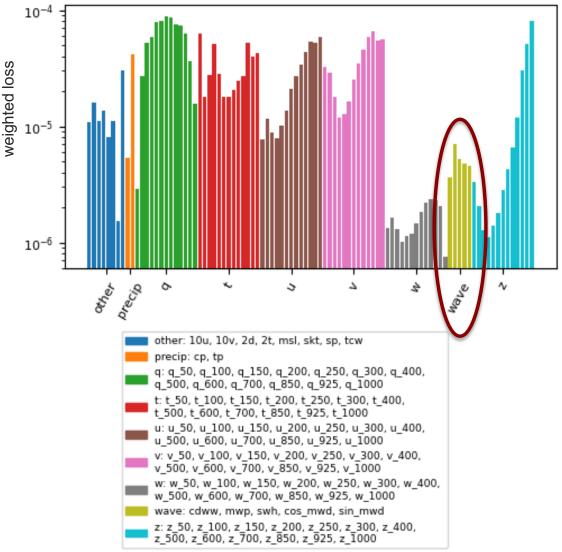
Train AIFS with additional wave variables

Significant wave height Mean wave direction Mean wave period Coefficient of drag with waves

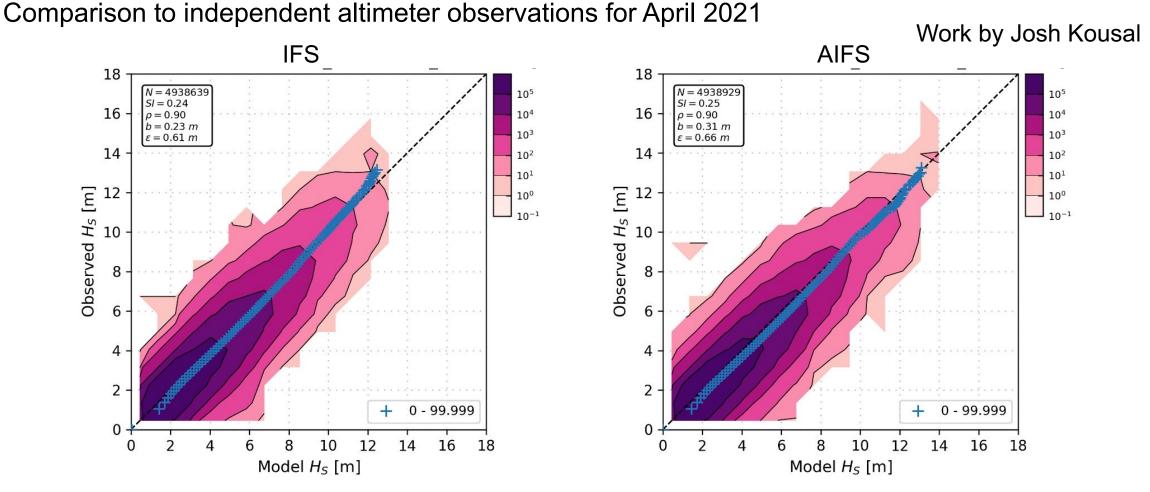
OBJECTIVES:

- Learn the new wave variables together with the atmosphere
- Avoid deteriorating the atmospheric skills
- Test potential benefit from additional wave information

Work by Sara Hahner

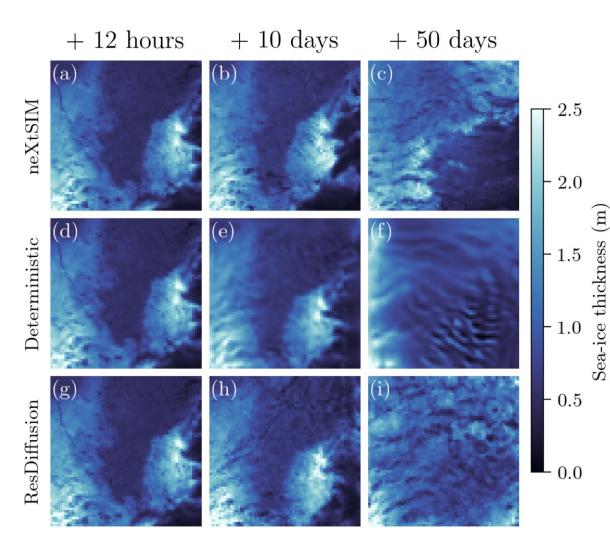


Waves performance in AIFS



AIFS waves are comparable with the operational model, with the caveat of the low resolution Impact on surface winds is small

Sea ice simulations with generative AI



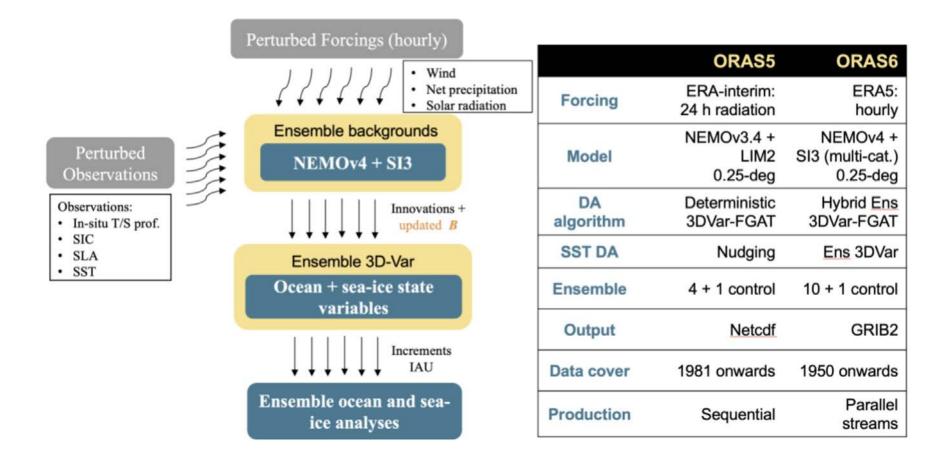
Finn et al. (2024) – <u>AU</u>THOREA preprint

Generative diffusion for regional surrogate models from sea-ice simulations

OPEN QUESTIONS:

- How to normalize sea ice variables?
- What is the optimal ML architecture for sea ice?
- Suitable datasets for training the model?

ORAS6 – (planned release end 2024) the 6th Generation of the ECMWF Ocean and Sea ice Reanalysis



ORAS6 will be used as oceanic forcing for ERA6

Towards modelling the 3D ocean with ML

CHALLENGES:

- Complex ocean geometries and coastlines.
- Limited resolution and observational constraints of ocean reanalyses.
- Varying timescales surface velocities change much faster than temperature (Subel and Zanna, 2024)
- The very long dynamic timescales of the deeper ocean.

APPROACH:

- Customize training and rollout for ocean.
- Design specific graphs for ocean geometry.
- Different depths for different applications. Is an emulator of the full 3d ocean always useful?

Rachel Furner

Rilwan Adewoyin

Sarah Hahner

Mario Santa Cruz

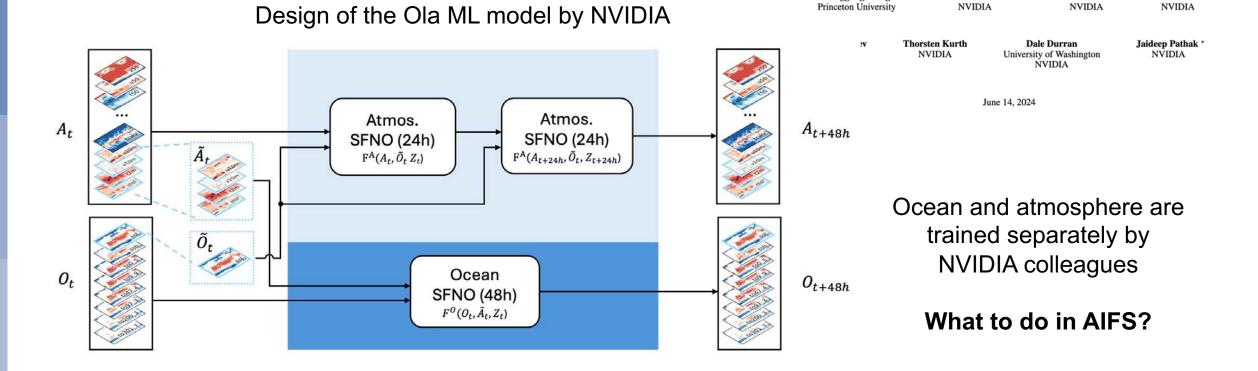
Coupling – Still a good strategy for ML?

COUPLED OCEAN-ATMOSPHERE DYNAMICS IN A MACHINE LEARNING EARTH SYSTEM MODEL

Noah Brenowitz

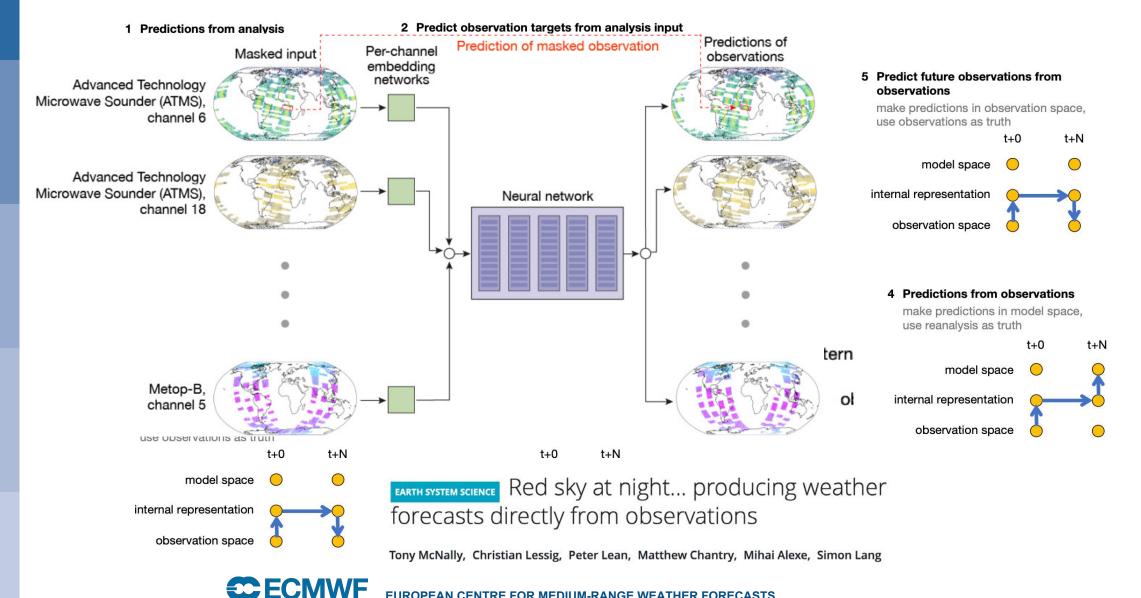
Michael S. Pritchard

Chenggong Wang *



Yair Cohen

More AI-related activities at ECMWF



EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

ANCOL an open-source framework for developing machine learning weather forecasting models

Anemol comprises of components or packages for

- Preparing training datasets
- Conducting ML model training
- Building graphs
- Registry for datasets and trained models
- Operational inference
- Interfacing to verification software https://github.com/ecmwf

Anemoi packages

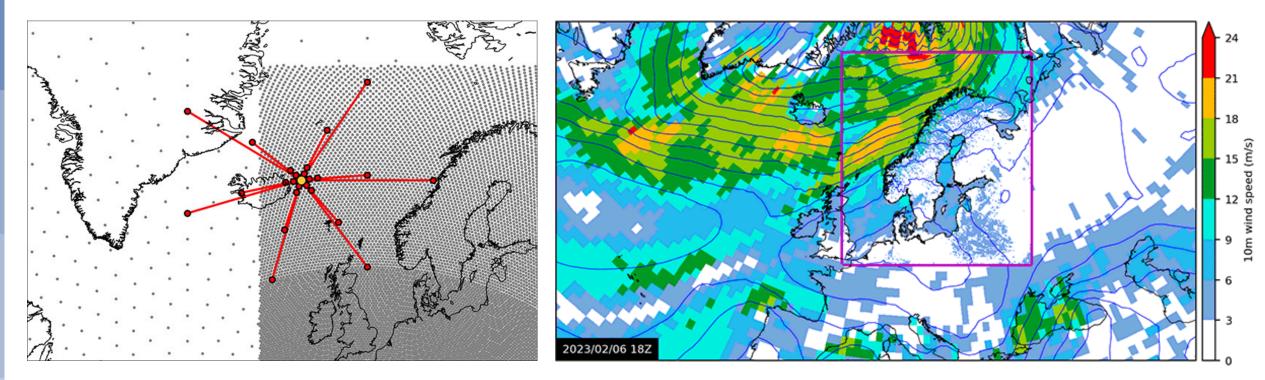
- anemoi-utils
- anemoi-datasets
- anemoi-models
- anemoi-graphs
- anemoi-training
- anemoi-inference
- anemoi-registry

License

Anemoi is available under the open source Apache License.

ANEMOI an open-source framework for developing machine learning weather forecasting models

Regional modelling at MetNorway with Anemoi



arXiv preprint: Regional data-driven weather modeling with a global stretched-grid by Nipen et al. 2024

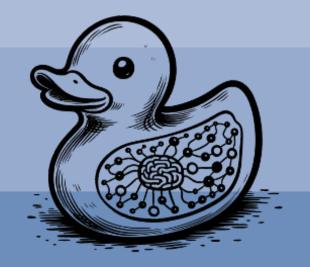
Norwegian Meteorological ↓ Institute Ocean Model Development, Data-driven Parameterizations, and Machine Learning in Ocean Models of the Earth System Workshop

9-12 September 2024 – Boulder, Colorado

Thank you for your time!

Lorenzo Zampieri

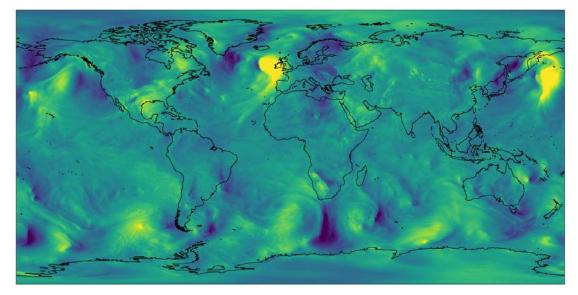
Ocean Modelling Team, Earth System Modelling, Research Dept. lorenzo.zampieri@ecmwf.int



ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

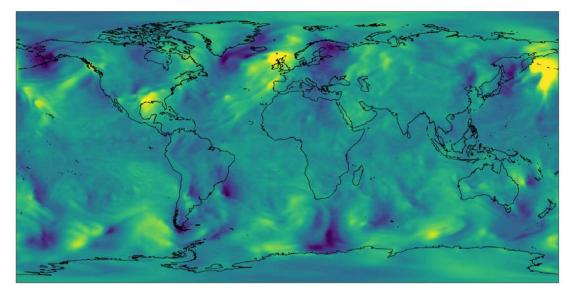
Forecast smoothing – Deterministic vs. Generative

Deterministic AIFS



Forecast Day 10 – Resolution ~ 0.25°

Generative AIFS



Forecast Day 10 – Resolution ~ 1° Single ensemble member

