Remote sensing for aerosol, cloud, and precipitation – Promises and challenges

Christine Chiu Colorado State University

Jesse Loveridge, Kevin Yang, Ching-Shu Hung, Olivia Pierpaoli Peter Jan van Leuween, Graham Feingold's group

Aerosol radiative forcing remains uncertain

2

Uncertainty in cloud feedback remains large

Sherwood et al. (Reviews of Geophysics, 2020)

Errors in 1D cloud retrievals remain large, too!

Retrieval method	Retrieval method Cloud optical depth		Cloud effective radius	
	Open cell	Closed cell	Open cell	Closed cell
1D, SZA=20°	30.7 %	16.0 %	38.3 %	51.2 %
3D, SZA=20°	21.6 %	23.4 %	5.5 %	6.7 %
1D, SZA=60°	74.8 %	50.9 %	51.1 %	55.2 %
 3D, SZA=60°	26.6 %	18.7 %	6.5 %	7.3 %

Okamura et al. (AMT, 2017)

And, we still have very limited 3D cloud observations from the ground and none from space!

Outline

Advancing aerosol observations on "no man's land"

Challenges in observing 3D cloud microphysics

Challenges in observing concurrent species in warm and ice-containing clouds

Constraints on aerosol properties have been largely from satellites measurements

The reflectance near clouds is enhanced

- 1. The hygroscopic growth
- 2. New particle formation
- 3. Chemical processing in clouds
- 4. Undetected sub-grid clouds
- 5. 3D Cloud radiative effects

(excerpted from Varnai et al., 2013)

A retrieval method that can handle 3D radiative effects

- Based on machine learning techniques
- Train reflectance fields generated from 100-m model output and 3D RT

Comparison to MODIS Dark Target 3 km products

Yang et al. (in prep.)

3D Cloud Observations

Our approach for retrieving 3D cloud properties

- Combining spaceborne shortwave reflectance and radar reflectivity measurements
- Directly incorporate 3D radiative transfer during the retrieval process
- Use a particle flow retrieval framework

Key advantage of Particle flow method

- It is all about uncertainty!
- Particle flow provides us a complete posterior pdf of retrievals even in a nonlinear system

Apply the particle flow retrieval method to one of EarthCARE test scenes

Liquid water content along track

COLORADO STATE

Liquid water content across track

Retrieving concurrent species is challenging

In-situ cloud measurements from UK PICASSO campaign

Evaluating ice number concentration

ARM BAECC campaign in Finland 2014

- surface "in-situ" observations are available
- Along-wind X-band radar scans for studying microphysical processes in a Lagrangian sense
- Comprehensive aerosol measurements for predicting primary ice # concentration

Kneifel et al. (JGR, 2015)

20

Next steps for better observing cloud/precipitation microphysics (property and process)

- Deploy dedicated, coordinated field campaigns (various platforms)
- Develop the capability to observe 3D cloud fields (from the ground and space) that allow Lagrangian analyses
- Define clearer science requirements for key aerosol, cloud and precipitation observables
- Improve quantification of retrieval uncertainty
- Incorporate retrieval uncertainty in analyzing data and constraining models