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Aerosol radiative forcing remains uncertain

IPCC (AR5, 2013)
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Uncertainty in cloud feedback remains large

Sherwood et al.  (Reviews of Geophysics, 2020)



4

Errors in 1D cloud retrievals remain large, too!

Okamura et al. (AMT, 2017)

And, we still have very limited 3D cloud observations from the ground and 
none from space!
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Challenges in observing concurrent species 
in warm and ice-containing clouds
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Advancing aerosol observations on “no man’s land”

Challenges in observing 3D cloud microphysics
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Constraints on aerosol properties have been largely from 
satellites measurements
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The reflectance near clouds is enhanced

1. The hygroscopic growth

2. New particle formation

3. Chemical processing in clouds

4. Undetected sub-grid clouds

5. 3D Cloud radiative effects

(excerpted from Varnai et al., 2013)
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A retrieval method that can handle 3D radiative effects

• Based on machine learning techniques

• Train reflectance fields generated from 100-m model output and 3D RT
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0.01 + 5%AOD

Yang et al. (GRL, 2022)



Comparison to MODIS Dark Target 3 km products
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Various cloud 
organizations
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3D Cloud Observations
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Our approach for retrieving 3D cloud properties
• Combining spaceborne shortwave reflectance and radar reflectivity measurements

• Directly incorporate 3D radiative transfer during the retrieval process 

• Use a particle flow retrieval framework
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Key advantage of Particle flow method

• It is all about uncertainty!  

• Particle flow provides us a complete posterior pdf of retrievals even in a 
nonlinear system
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Apply the particle flow 
retrieval method to 
one of EarthCARE test 
scenes
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Liquid water content along track
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Liquid water content across track
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Retrieving concurrent species is challenging
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Hung et al. (in prep.)
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In-situ cloud measurements from UK PICASSO 
campaign
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~1.28 mm



Evaluating ice number concentration
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Kedzuf et al. (AMT, 2021)

our retrievals overestimates the median by 98%



ARM BAECC campaign in Finland 2014

• surface “in-situ” observations are available

• Along-wind X-band radar scans for studying microphysical 
processes in a Lagrangian sense

• Comprehensive aerosol measurements for predicting 
primary ice # concentration

20

Kneifel et al. (JGR, 2015) 

Petäjä et al. (2016, BAMS)

Propagation



Next steps for better observing cloud/precipitation 
microphysics (property and process)

• Deploy dedicated, coordinated field campaigns (various platforms)

• Develop the capability to observe 3D cloud fields (from the ground and space) that 
allow Lagrangian analyses

• Define clearer science requirements for key aerosol, cloud and precipitation 
observables

• Improve quantification of retrieval uncertainty

• Incorporate retrieval uncertainty in analyzing data and constraining models
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