The Influence of a Weakened AMOC on the El Niño-Southern Oscillation

Alyssa Atwood, David Battisti, Cecilia Bitz University of Washington Sept. 10th 2014

ENSO variability found to increase in response to freshwater hosing in 4/5 GCM simulations

Timmermann et al. (2007)

Hosing Experiments with CESM

- CESM Experiments
 - Prescribe 1 Sv freshwater perturbation in N.
 Atlantic for 100 years
 - Hose with and w/out flux corrections to reduce tropical Pacific mean state biases
- Apply tropical Pacific mean states to the Linearized Ocean Atmosphere Model (LOAM)
- Evaluate ENSO response in GCM and in LOAM

Influence of Flux Corrections

Improved trop. Pac. mean state in flux corrected run

Improved ENSO phase-locking to annual cycle

Obs (last 40 yrs NOAA ERSST v3b)

CCSM4 Preind Control Run

CESM Flux Corrected Run

Increased ENSO variability in flux-corrected run

420

440

460

480

500

Obs (last 40 yrs NOAA ERSST v3b)

Non-flux corrected control run

Flux Corrected Control Run

Hosing Simulations

AMOC shutdown in all hosing runs

AMOC shutdown causes tropical Pacific cooling and incr. surface winds in EEP

Non-flux corrected: Hosed - Control

Flux Corrected: Hosed - Control

Tropical Pacific cooling much larger in non-flux corrected run

ENSO variance <u>decreases</u> under hosing in preindustrial run run but increases under hosing in flux corrected run

ENSO response is highly sensitive to mean state biases in the tropical Pacific

Tool: LOAM

Linearized Ocean Atmosphere Model

(Thompson and Battisti, 2000)

- Linearized intermediate model of the tropical Pacific coupled atmosphere-ocean system (similar to Zebiak Cane Model)
- Input a prescribed climatological mean state (SST, surface winds, upper ocean currents, and upwelling)
- -Describes anomalies about the mean state

LOAM: Model Formulation

$$\frac{\partial T}{\partial t} = -u_1 \frac{\partial}{\partial x} \overline{T} - v_1 \frac{\partial}{\partial y} \overline{T} - \left[\overline{u_1} \frac{\partial}{\partial x} + \overline{v_1} \frac{\partial}{\partial y} \right] T - \left[K_w(x, y) w_1 - K_T(x, y) h - d(x, y) T \right],$$

Ocean thermodynamics

$$au - \beta yv + g' \frac{\partial h}{\partial x} = -\frac{\partial u}{\partial t} + K_S^x U + K_S^c V,$$

$$\beta yu + av + g' \frac{\partial h}{\partial v} = K_S^y V + K_S^c U,$$

forcing of upper layer currents and thermocline depth by winds

$$c_a^2 \frac{\partial U}{\partial x} + c_a^2 \frac{\partial V}{\partial y} + A\varphi = -K_Q T + K_C \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} \right)$$
 Atm thermodynamics

LOAM: Evolution of System

$$d\mathbf{x}/dt = \mathbf{M}\mathbf{x} + F_{N}$$
$$d\mathbf{x}/dt = \mathbf{M}\mathbf{x}$$
$$\mathbf{x}(t) = e^{\mathbf{M}t}\mathbf{x}(0) = \mathbf{R}\mathbf{x}(0)$$

LOAM results consistent with ENSO response in CESM under hosing

Non-flux corrected runs

Model	Mode Period (yr)	Mode Growth (yr ⁻¹)	Variance (<u>°C²)</u>
CCSM4 pi cont			1.20
CCSM4 hosed			0.80
LOAM pi cont	3.19	0.63	1.20
LOAM hosed	3.07	0.43	0.62

ENSO Mode

Non-flux corrected LOAM control run

Non-flux corrected **hosed run**

ENSO variance <u>decreases</u> under hosing in non-flux corrected run

What mean field(s) are responsible for the increased stability of ENSO in the non-flux corrected hosing run?

Model	Mode Period (yr)	Mode Growth (yr ⁻¹)	Variance (<u>°C²)</u>
CCSM4 pi			1.20
CCSM4 hosed			0.80
LOAM pi	3.19	0.63	1.20
LOAM hosed	3.07	0.43	0.62
CCSM4 pi + SST	3.05	0.56	0.84
CCSM4 pi + currents	3.77	0.60	1.28
CCSM4 pi + winds	3.15	0.83	1.63
CCSM4 pi + subsfc temp	3.04	0.38	0.46

ENSO variance <u>decreases</u> due to combination of mean SST and subsurface temp changes

LOAM results consistent with ENSO response in CESM under hosing

Flux corrected runs

Model	Mode Period (yr)	Mode Growth (yr ⁻¹)	Variance (<u>°C²)</u>	
CESM pi cont			1.20	4
CCSM4 hosed			1.50	
LOAM pi cont	3.23	0.59	1.18	4
LOAM hosed	3.42	0.64	1.36	

LOAM control

run: flux

corrected

LOAM hosed run: flux corrected

increases under hosing in flux corrected run

What mean field(s) are responsible for the increased stability of ENSO in the non-flux corrected hosing run?

Model	Mode Period (yr)	Mode Growth (yr ⁻¹)	Variance (<u>°C²)</u>
CCSM4 pi			1.20
CCSM4 hosed			0.80
LOAM pi	3.23	0.59	1.18
LOAM hosed	3.42	0.64	1.36
CCSM4 pi + SST	3.23	0.58	1.18
CCSM4 pi + currents	3.63	0.65	1.57
CCSM4 pi + winds	3.02	0.59	1.09
CCSM4 pi + subsfc temp	3.32	0.58	1.16

ENSO variance **increases** due to changes in mean upwelling and ocean currents

Conclusions

- ENSO response is well-represented by the influence of mean state changes under hosing on linear ENSO dynamics
- ENSO response to hosing:
 - <u>decreases</u> in CCSM4 w/out flux corrections due to colder SSTs and changes in the mean subsurface temperatures
 - <u>increases</u> in CCSM4 w/ flux corrections due to changes in mean upwelling and ocean currents
- Response of ENSO to AMOC shutdown is sensitive to mean state biases in the tropical Pacific

Next Steps

- Better characterize the mechanisms responsible for the mean state changes and ENSO in CESM
- Assess sensitivity of ENSO response to different hosing magnitudes
 - Initial results say yes!
- Use LOAM to evaluate ENSO response after remove tropical Pacific mean state biases by adding changes to obs. climatology

Thank you!

Special thanks to: Will Roberts, Dan Vimont, Julian Sachs, LuAnne Thompson, Dargan Frierson, Paul Quay