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Estimating heat transport from the array

Meridional Heat Transport: Q= J- J pec, vl dx dz

Quet = Qpc T Qpx T Qwp T Qinvt T Qeppy

(Qpc — Cable transport = Seasonally varying flow-weighted FC
temperature (updated from Shoosmith et al., 2005)

Qg — CCMP/ERA wind stresses * Argo Ekman layer temperature

Qg — Directly calculated from moored current meters/thermistors in
Abaco western boundary array

Qnt — Zonally-averaged interior transport profile from endpoint
geostrophic moorings * Zonally-averaged interior ocean
temperature (Argo in top 2000 m merged with seasonal Hydrobase
climatology below 2000 m)

Qpppy — Contribution due to spatially correlated v, T variability across
the interior (from Argo) Oyppy = JI pc, v'0'dx dz

Johns et al., J.Clim. (2011)



What’s New?

1. Weekly Argo/Rapid Ol for interior, used in:
- Q,\7 (replaces Hydrobase seasonal temperature

climatology)
- Qcppy (replaces estimate from historical sections and

widely-spaced geostrophic moorings)
- Qi (replaces Reynolds SST)
2. Updated Florida Current seasonal flow-weighted
temperature (more sections)

3. Other improvements (McCarthy et al. 2014, Prog.

Oceanogr.)
- better surface extrapolation of interior geostrophic

velocities
- TEOS-10 equation of state



Meridional Heat Transport and Components

Florida C. Interior WB Abaco
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Low-frequency Variability of Gulf Stream, Ekman, Mid-ocean,
and total Heat Transport
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Geostrophic (non-Ekman) Heat Transport Variability

RAPID-MOC Array 26.5N
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Overturning and Gyre Heat Transports
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What are the impacts of these heat transport changes?
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Anomalous Heat Content (0-1000m, 25°N - 45°N, 60°W - 20°W)
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AOHC = fAQQGth
Maximum
Northward Heat Transport (PW) Deficit =

Accumulated Heat Transport Anomaly (10**22 J) 45
Average Heat Transport for 2004-2008 = 1.33PW
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AOHC from Argo: 25-45°N
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Bryden et al. (2014)

=> Significant cooling occurred in the N. Atlantic following the heat
transport reduction in 2009

=> A decrease in heat transport of 0.2 PW is equivalent to a 7 W/m?
change in surface heat flux over the entire Atlantic north of 26°N.



A longer term perspective on N. Atlantic heat storage

Global Mean Temperture Anomaly

North Atlantic heat content (30-65°N; 0-700m)
http.//www.nodc.noaa.gov

NODC:; North Atlantic (60-0W, 30-65N) heat content 0-700 m depth
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Summary

* The northward heat transport across 26.5°N has decreased during the RAPID-
MOCHA observation period. The last 5 years show a reduction of 0.2 PW from

the first 5 years.

* Interannual HT variability is dominated by the geostrophic circulation, and
mostly by the mid-ocean HT. Both Ekman and Gulf Stream variability
contribute to “extreme” events (including short-term HT reversals).

« Ocean heat content in the N. Atlantic has decreased since 2008, coinciding
with the drop in HT across 26.5°N. The magnitude and timing of the OHC
change is consistent with the observed HT reduction, suggesting surface
cooling is playing a lesser (but possibly complementary) role.

» Key questions:

- How do these heat transport anomalies move/spread into the N. Atlantic?
- On what time scale?

- What are the associated OHC tendencies resulting from ocean heat
advection/divergence?

- What OHC patterns are set up?

-> Data is available online! http://www.rsmas.miami.edu/users/ mocha/






