

Simulated Atlantic Multidecadal Variability (AMV) during the 20th Century in CESM Large Ensemble and Forced Ocean Simulations

Who M. Kim¹ (whokim@tamu.edu), Stephen Yeager², Ping Chang¹, and Gokhan Danabasoglu²

¹ Texas A&M University, Dept. of Oceanography, ² National Center for Atmospheric Research

Motivations

Some recent studies have claimed that the AMV during the 20th century (20C) could have be forced by combined influence of greenhouse-induced warming and aerosol-induced cooling¹, in contrast to many previous studies stressing the role of internal variability. This externally forced AMV also appears in historical CESM Large Ensemble simulations (CESM-LE)², a large ensemble size (30) of which allows for quantifying a robust response to external forcing.

On the other hand, a recent study suggested that the AMV could be driven by wind forcing alone through modulations of gyre strength, which in turn result in a convergence or divergence of heat in the upper ocean³.

Key Questions and Answers

Was the 20C AMV driven by external radiation forcing, as suggested in ref. 1?

No. While the AMV in CESM-LE appears to be related to external radiation forcing, as in ref. 1, a forced ocean simulation with climatological radiation almost entirely reproduces the AMV in the control simulation, which is in excellent agreement with the observed AMV. This result suggests the external radiation forcing has a negligible role in driving the AMV, at least, during the second half of the 20C.

Was the 20C AMV driven mechanically by wind forcing, as suggested in ref. 3?

No. A forced ocean simulation only with interannually varying momentum fluxes shows that **wind** forcing cannot produce the AMV alone.

These disparities suggest that, given its substantial influence on climate, we need to better understand the mechanism of the AMV. In this study, we explore and compare the mechanism of simulated AMV in CESM-LE and in its ocean component forced with a best available atmospheric dataset.

- A suite of flux perturbation experiments using an ocean model suggests that changes in ocean circulations associated with turbulent heat fluxes are *ultimate mechanism* of the AMV

CESM-LE reasonably reproduces the observed AMV, similar to ref. 1

• The AMV in POP shows an excellent agreement, better than CESM-LE, with the observations for the available time span.

Fig.3 Surface heat flux anomalies

averaged over the AMV region and relative to the respective 1958-2005 mean. All time series are smoothed using a 11-yr running mean. Note that shortwave and downwelling long wave radiation in POP are from satellite-based data (ISCCP-FD) since 1984

Fig.6 SST, T_{sub} , and BSF differences (W2 – C) in flux perturbation runs. POP-M

- The AMV in CESM-LE appears to be driven by combined effects of shortwave and downwelling longwave radiation
- However, their changes during the late 20C is not consistent with observations (POP)
- In addition, the AMV in POP does not appear to be driven by either radiation or total net surface heat flux

Fig.4 Barotropic streamfunction (BSF) and T_{sub} differences (W2 – C) BSF difference in contours (interval: 1 Sv) and T_{sub} difference in color

POP-B.

the late 20C, is driven by AMOC changes associated with buoyancy forcing, particularly due to turbulent heat fluxes⁴ And effects of both radiation and momentum forcing on the AMV are negligible

- In both differences, CESM-LE does not pick up the observed intense warming along GS/NAC
- POP reasonably reproduces the observed spatial difference in W2 C including the intense GS/NAC warming

• While the AMV in CESM-LE is not linked to changes in ocean circulations • The AMV in POP appears to be associated with changes in ocean circulations, including the AMOC

References

- Booth et al. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. *Nature* **484**, doi:10.1038/nature10946 (2012).
- Häkkinen et al. Atmospheric blocking and Atlantic multidecadal ocean variability. *Science* **334**, doi:10.1126/science.1205683 (2011).
- Kay et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability, submitted to BAMS (2014).
- Yeager & Danabasoglu. The origins of late-twentieth-century variations in the largescale North Atlantic circulation. J. Climate 27, doi:10.1175/JCLI-D-13-00125.1 (2014).

This research is funded by the U.S. National Oceanic and Atmospheric Administration Grant NA130AR4310136.