AMOC variability under 4xCO₂ conditions

Douglas G. MacMartin

Computing + Mathematical Sciences
California Institute of Technology
macmardg@cds.caltech.edu

Eli Tziperman

Earth & Planetary Sciences, Eng. & Applied Sciences, Harvard University eli@eps.harvard.edu

Laure Zanna
Climate Physics,
Oxford University
Zanna@atm.ox.ac.uk

Supported by DOE award DE-SC004984 And NOAA awards NA13OAR4310129 & NA13OAR4310130

Goals

- How might interannual AMOC variability change with increased CO₂?
- Focus on GFDL ESM2M which has a peak in power spectrum of AMOC variability at roughly a 15 year period
- Compare preindustrial and 4xCO₂ simulations
- Key difference is a northward shift in the pattern of variability

Oscillation Pattern: Composite Maps

- Generate average anomaly pattern from years when AMOC is at a maximum minus years at a minimum
 - See time series at left (45°N for preindustrial, 60°N for 4xCO₂)

- Oscillation in overturning streamfunction peaks at 45°N in preindustrial, 60°N in 4xCO₂
- Effect on temperature, salinity, density, etc. all occur further north
- Including Nordic sea (not shown in plot above)
- Variability in vertical velocity @ 1000m depth:
 - Mostly off of Greenland in 4xCO₂
 Near Grand Banks in projection

• Oscillation is thermohaline in both PI and 4xCO₂ cases (based on phase relationship between temperature, salinity, and AMOC)

Change in forcing or dynamics?

 Power spectrum of atmospheric forcing is relatively unchanged, but the transfer function from surface forcing to AMOC changes at peak frequency of AMOC

- E.g. PSD of high-latitude wind stress
- Transfer function to AMOC at 26N (left)
 and at 60N (right); PI (blue) and 4x (red)
- Difference in AMOC variability is mostly due to difference in dynamics

60°N, 35°W

Mean field changes due to high-CO₂ result in higher stratification *at depth* in the area where the variability in vertical velocity used to be high in preindustrial

Results in suppression of overturning variability at 45°N
 Consistent with

the decrease in both the mean strength and mean depth of the overturning circulation

No change at depth where variability occurs in 4xCO₂.

to be high in preindustrial

Mean Brunt-Väisälä

frequency at

1000m depth

2000

Pre-industrial

Pre-industrial

Pre-industrial

Pre-industrial

AxCO2

Density

Density

Decreased surface density north of 45°N is primarily due to decreased salinity

Further analysis is in progress...

Summary

- Increased atmospheric CO₂ can lead to changes in AMOC variability
 - Variability in GFDL ESM2M shifts further north
 (from largest variability at 45°N to largest variability at 60°N, with no signal at 26°N)
 - Caused by a shift in internal ocean dynamics, rather than any change in "external" forcing
- Changes in mean field are (presumably) responsible for changes in dynamics, however, linkages are still unclear.
- Potential pathway:
- Decreased surface density due to decreased salinity
- Decreased and shallower mean overturning circulation leads to greater stratification at depth (~1000m) in the region where variability in overturning circulation used to occur.
- Further north where variability occurs in 4xCO₂ simulation, surface density changes do
 not propagate very deep at all; stratification is comparable to pre-industrial.