

Forecast cooling of the Atlantic sub-polar gyre and associated impacts Leon Hermanson, Rosie Eade, Niall H. Robinson, Nick J. Dunstone, Martin B. Andrews, Jeff R. Knight,

Adam A. Scaife and Doug M. Smith All at Met Office Handley Centre, Exeter, UK

Research Questions

Changes to the temperature of the sub-polar gyre (SPG) have previously been shown to have important wide ranging impacts on climate, including European, American and African temperature and precipitation^{1,2,3,4}. Can three versions of the Met Office Decadal Prediction System (DePreSys) be combined to provide a skilful forecast of the sub-polar gyre and the associated impacts? If so, what are the mechanisms that give rise to this predictability? What are the impacts for the five summers (June-July-August, JJA) of 2012 - 2017?

Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB United Kingdom Tel: 01392 885680 Fax: 01392 885681 Email: niall.robinson@metoffice.gov.uk

Conclusions

•DePreSys shows skill at predicting changes in SPG temperature and the variations in the AMOC that cause them over a 52 year hindcast period.

•The recent cooling trend in the SPG is predicted to continue over the next five years due to decreased SPG heat convergence. •Forecast is for a "less warm" SPG, i.e. a reduced probability of the types of weather previously shown to be associated with a warm SPG.

Previous studies^{6,7} show SPG ocean velocities are largely driven by 1200-3000m west-east density

References

1: Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nunez, and W. M. Gray (2001), The recent increase in Atlantic hurricane activity: Causes and implications, Science, 293, 474–479. 2: Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife (2010), Skilful climate model predictions of multi-year North Atlantic hurricane frequency, Nat. Geosci., 3, 846–849, doi:10.1038/ngeo1004. 4: Dunstone, N. J., D. M. Smith, and R. Eade (2011), Multiyear predictability of the tropical Atlantic atmosphere driven by high latitude North Atlantic Ocean, Geophys. Rev. Lett., 28, L14701, doi:10.1029/2011GL047949. 6: Hodson, D. L. R., and R. T. Sutton (2012), The impact of resolution on the adjustment and decadal variability of the Atlantic meridional overturning circulation in a coupled climate model, Clim. Dyn., 39(12), 3057–3073.

Geophys. Res. Lett., 41, 5167–5174, doi:10.1002/2014GL060420.

• Counting Atlantic tropical storms in the models for June to November indicate a reduction in numbers, as expected with SPG cooling^{1,2,3,4}, probably related to higher pressure in the tropical North Atlantic. • Weaker signals in the forecast suggest, compared to recent years: Reduced summer rainfall in western Sahel and increased rainfall in NE Brazil - consistent with the lit. on SPG cooling. • A warmer Mediterranean in the summer - inconsistent with the lit. on SPG cooling.

conducive to forming cyclones Development Region (MDR) of the North Atlantic. The grand ensemble conditions for the cyclone seasons of 2012-2017. predicts a decrease in tropical storm count.

^{3:} Smith, D. M., A. A. Scaife, and B. P. Kirtman (2012), What is the current state of scientific knowledge with regard to seasonal and decadal forecasting?, Environ. Res. Lett., 7, 015602, doi:10.1088/1748-9326/7/1/015602

^{7:} Roberts, C. D., F. K. Garry, and L. C. Jackson (2013), A multi-model study of sea surface temperature and sub-surface density fingerprints of the Atlantic meridional overturning circulation, J. Clim., 26, 9155–9174, doi:10.1175/JCLI-D-12-00762.1 8: Pohlmann, H., D. M. Smith, M. A. Balmaseda, N. S. Keenlyside, S. Masina, D. Matei, W. A. Müller, and P. Rogel (2013), Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system, Clim. Dyn., 41, 775–785, doi:10.1007/s00382-013-1663-6.