Evidence of reduced formation of NADW in recent decades

- Historical atmospheric state fields (CORE-II data) spanning 1948-2013 are paired with monthly observed sea surface temperatures (SST) and daily observed sea ice fraction to generate an historical air-sea flux data set.
- Using monthly climatological sea surface salinity (SSS), estimates of historical high latitude North Atlantic surface density flux (D_N) are computed from net air-sea heat (Q_{air}) and freshwater (Q_{f}) contributions as follows:

$$D_N = \frac{Q_{air}}{C_v} - \beta \frac{SSS - 34}{1 - SSS}$$

- Monthly water mass transformation (WMT) rates (Sv) are computed as spatial integrals of D_N over pre-defined outcrop areas in each of four North Atlantic regions. Corresponding water mass formation (WMF) rates are given by the density convergence of WMT:

$$WMF(\rho) = \frac{1}{\Delta \rho} \int D_N d\Delta \rho$$

- In the adiabatic limit, the surface WMT over the high latitude North Atlantic suggests a mean subduction rate of NADW of ~19 Sv.
- Interannual variations in formation of NADW correlate highly with the winter NAO index (F3). The extreme NAO- of 1996 subduced in a 15-year period of normal-to-weak NADW formation, in sharp contrast to the 1980-1995 period. The extreme NAO- of 2010 was associated with very weak NADW production, but has since recovered to normal levels.

Predicting Atlantic Circulation Changes

- Temporal variations in the surface formation of NADW explain most of the large decadal AMOC changes in a COREII-forced ocean-ice simulation of the 1948-2013 period. The large increase in AMOC strength between 1970-1993 and decrease since 1995 (F4, panel a) is in line with observed “WFM” variability (F3).
- Now consider a suite of CMIP5 fully-coupled decadal prediction (DP) experiments (10 member ensembles) initialized from the COREII ocean-ice state every January between 1955-2014. There is little skill in predicting the WFM which sets Labrador Sea density anomalies (F5, left); however, there is high skill in predicting the southward propagation of pre-formed water mass anomalies into the Grand Banks shelf region (F5, right).

Impacts on North Atlantic surface temperature and sea ice extent

- Annual SST anomaly time series from 1948 to 2013 of net positive WMT (black curve, left axis) binned over the density range corresponding to NADW (≥978 kg/m³) for various N. Atlantic regions. The observed winter (DJFM) NAO index is also shown (red curve, right axis).

Summary

- Historical changes in the rate of NADW formation explain the large, buoyancy-driven decadal variations in AMOC and gyre flow in the COREII ocean-ice state estimation used to initialize fully-coupled CESM decadal prediction ensembles. The recently observed AMOC cooling resulting from much reduced NADW formation can be skilfully predicted as a manifestation of the large-scale atlantic circulation. DP ensembles can still skillfully predict the dynamical consequences of pre-formed NADW anomalies, but not the actual formation processes. The return of normal NADW formation rates suggests that AMOC cooling trends will weaken.

Acknowledgments

This work is made possible by the NOAA Climate Program Office under Climate Variability and Predictability Program grants NA06OAR4310163 and NA13OAR4310138, the National Science Foundation’s (NSF) Collaborative Research EaSM2 grant OCE-1243015, and the National Oceanic and Atmospheric Administration’s (NOAA) Cooperative Agreement OAR/NA16OAR4310029, and the CESM through its sponsorship of the National Center for Atmospheric Research.